
- •Сопротивление материалов
- •Основные обозначения
- •Лекция 1. Основные понятия и исходные положения
- •1.1. Введение
- •1.2. Основные понятия и исходные положения
- •1.2.1. Реальный объект и расчетная схема
- •1.2.2. Основные гипотезы и допущения сопротивления материалов
- •1.2.3. Внешние силы (нагрузки)
- •1.3. Метод сечений
- •1.3.1. Внутренние силы
- •1.3.2. Понятие о напряжениях
- •1.4. Понятия о перемещениях и деформациях
- •Вопросы для самопроверки
- •Лекция 2. Центральное растяжение (сжатие)
- •2.1. Внутренние силы при растяжении
- •2. 2. Нормальные напряжения и условие прочности
- •2.3. Механические испытания материалов при растяжении (сжатии)
- •2.4. Потенциальная энергия деформации
- •Вопросы для самопроверки
- •Лекция 3. Теория напряженного и деформированного состояний
- •3.1. Главные площадки и главные напряжения
- •Напряженным состоянием тела в точке называют совокупность нормальных и касательных напряжений, действующих по всем площадкам (сечениям), содержащим данную точку.
- •3.2. Виды напряженного состояния
- •3.2.1. Линейное напряженное состояние
- •3.2.2. Плоское напряженное состояние
- •Рассмотрим частные случаи плоского напряженного состояния.
- •3.2.3. Объемное напряженное состояние
- •3.3. Обобщенный закон Гука
- •3.4. Теории прочности
- •Вторая теория прочности – теория наибольших деформаций – впервые была высказана французскими учеными Мариоттом и Навье, а затем поддержана Понселе и Сен-Венаном.
- •Вопросы для самопроверки
- •Лекция 4. Геометрические характеристики плоских сечений
- •4.1. Статические моменты сечений
- •4.2. Моменты инерции сечений
- •4.2.1. Изменение моментов инерции при параллельном переносе осей
- •4.2.2. Изменение моментов инерции сечения при повороте осей
- •4.3. Главные оси инерции и главные моменты инерции
- •4.4. Моменты инерции простых сечений
- •4.4.1. Прямоугольник
- •4.4.2. Треугольник
- •4.4.3. Круг
- •4.4.4. Кольцо
- •Вопросы для самопроверки
- •Лекция 5. Кручение прямого бруса
- •1. Построение эпюр крутящих моментов.
- •2. Напряжения в поперечном сечении.
- •3. Условия прочности и жесткости при кручении.
- •5.1. Построение эпюр крутящих моментов
- •5.2. Напряжения в поперечном сечении
- •5.3. Условия прочности и жесткости при кручении вала
- •5.4. Потенциальная энергия деформации при кручении
- •Вопросы для самопроверки
- •Лекция 6. Плоский изгиб
- •6.1. Построение эпюр поперечной силы и изгибающего момента
- •Решение
- •6.2. Напряжения при чистом изгибе
- •6.3. Напряжения при поперечном изгибе
- •6.4. Перемещения при плоском изгибе
- •Вопросы для самопроверки
- •Лекция 7. Перемещения в балках при чистом изгибе
- •7.1. Линейные и угловые перемещения в балках при прямом изгибе
- •7.2. Определение перемещений путем интегрирования уравнения изогнутой оси балки
- •7.3. Метод начальных параметров
- •7.4. Пример расчета
- •Вопросы для самопроверки
- •Лекция 8. Сложное сопротивление
- •1. Косой изгиб.
- •2. Внецентренное растяжение (сжатие).
- •3. Кручение с изгибом.
- •8.1. Косой изгиб
- •8.2. Внецентренное растяжение (сжатие)
- •8.2.1. Расчет напряжений при внецентренном растяжении (сжатии)
- •8.2.2. Свойства нулевой линии
- •8.2.3. Ядро сечения
- •8.3. Кручение с изгибом
- •Вопросы для самопроверки
- •Лекция 9.Устойчивость сжатых стержней
- •2. Влияние способов закрепления концов стержня на критическую силу.
- •9.1. Понятие об устойчивости. Задача Эйлера
- •9.2. Влияние способов закрепления концов стержня на критическую силу
- •9.3. Пределы применимости формулы Эйлера
- •9.4. Расчет стержней на устойчивость по коэффициенту снижения допускаемых напряжений
- •Относительный радиус инерции
- •Вопросы для самопроверки
- •Лекция 10. Динамическое действие нагрузок. Усталость
- •1. Динамическое действие нагрузок.
- •10.1. Динамическое действие нагрузок
- •10.1.1. Вычисление напряжений при равноускоренном движении
- •10.1.2. Определение перемещений и напряжений при ударе
- •10.1.3. Частные случаи
- •10.2. Прочность при циклически меняющихся напряжениях
- •10.2.1. Влияние концентраций напряжений, состояния поверхности и размеров детали на усталостную прочность
- •10.2.2. Запас усталостной прочности и его определение
- •Вопросы для самопроверки
- •Литература
- •Оглавление
- •Вопросы для самопроверки…………………………………………………...104
1.2. Основные понятия и исходные положения
1.2.1. Реальный объект и расчетная схема
В сопротивлении материалов, как и во всякой отрасли естествознания, исследование вопроса о прочности или жесткости реального объекта начинается с выбора расчетной схемы. Расчетная схема конструкции его упрощенная схема, освобожденная от несущественных в данной задаче особенностей (рис.1.1).
Рис. 1.1
В сопротивлении материалов геометрия реального объекта упрощается и приводится к форме бруса, пластины и оболочки.
Брус, или стержень (рис. 1.2 а) представляет собой тело, поперечные размеры которого малы по сравнению с длиной. Линия, соединяющая центры тяжести площадей, последовательно расположенных сечений бруса, называется осью бруса. Брус с прямой осью называется прямым, а с кривой осью – кривым. Кривой брус, у которого радиус кривизны оси велик по отношению к высоте сечения, называется брусом малой кривизны. Если этот радиус соизмерим с высотой – брусом большой кривизны.
Элемент конструкции, образованный двумя поверхностями, отстоящими друг от друга на малое расстояние, называется оболочкой (рис. 1.2 в). Оболочка, срединная поверхность которой представляет собой плоскость, называется пластиной (рис. 1.2 б).
а б в
Рис. 1.2
Примерами оболочек служат сосуд для жидкости, паровой котел, газовый баллон и др.
1.2.2. Основные гипотезы и допущения сопротивления материалов
Сложная форма, присущая реальному телу, и разнообразие физико-ме-ханических свойств материала составляют серьезные препятствия при изучении напряженного состояния тела теоретическим путем. Ввиду этого для каждого частного случая в зависимости от требуемой точности теорию расчета приходится строить на ряде допущений, или гипотез, идеализирующих реальное тело.
В сопротивлении материалов принято рассматривать все материалы как однородную сплошную среду, независимо от их микроструктуры. Под однородностью материала понимают независимость его свойств от величины выделенного из тела объема. И хотя в действительности реальный материал, как правило, неоднороден (уже в силу его молекулярного строения), тем не менее указанная особенность не является существенной, поскольку в сопротивлении материалов рассматриваются конструкции, размеры которых существенно превышают не только межатомные расстояния, но и размеры кристаллических зерен.
С понятием однородности тесно связано понятие сплошности среды, под которым подразумевают тот факт, что материал конструкции полностью заполняет весь отведенный ему объем, а значит, в теле конструкции нет пустот.
Под действием внешних сил реальное тело меняет свои геометрические размеры. После снятия нагрузки геометрические размеры тела полностью или частично восстанавливаются. Свойство тела восстанавливать свои первоначальные размеры после разгрузки называется упругостью. При решении большинства задач в сопротивлении материалов принимается, что материал конструкций абсолютно упругий.
Обычно сплошная среда принимается изотропной, т.е. предполагается, что свойства тела, выделенного из нее, не зависят от его ориентации в пределах этой среды. Отдельно взятый кристалл материала анизотропен, но так как в объеме реального тела содержится бесконечно большое количество хаотично расположенных кристаллов, принимается, что материал изотропен.
Основные гипотезы, принимаемые при построении теории сопротивления материалов, включают:
1. Гипотезу плоских сечений. Если в теле до деформации мысленно провести плоское сечение, то после деформации это сечение может не остаться плоским. Существует много практически важных случаев, где сечения после деформации остаются плоскими или мало отклоняются от плоскости. В курсе сопротивления материалов, за исключением поперечного изгиба, приходится делать предположение о том, что плоские сечения, проведенные в теле до деформации, остаются плоскими и после деформации (гипотеза Я. Бернулли).
2. Гипотезу о малости перемещений. Перемещения считаем малыми, если тело по отношению к своим общим размерам под нагрузками незначительно изменяет геометрическую форму. Это допущение неприменимо к гибким телам, которые сильно деформируются под нагрузками.
3. Принцип независимости действия сил. Результат воздействия на тело системы сил равен сумме результатов воздействия тех же сил, прилагаемых к телу последовательно и в любом порядке.
Под словами «результат воздействия» в зависимости от конкретной задачи следует понимать деформации, внутренние силы, возникающие в теле, и перемещения отдельных точек. Необходимо иметь в виду, что действие отдельных сил системы должно рассматриваться вместе с соответствующими им реакциями связей.
Принцип независимости сил, используемый в теоретической механике для абсолютно твердых тел, к деформируемым телам применим только при следующих условиях:
– перемещения точек приложения сил малы по сравнению с размерами тела;
– перемещения, являющиеся результатом деформации тела, линейно зависят от действующих сил. Такие тела (системы) называют линейно деформируемыми или подчиняющимися закону Гука.
В обычных конструкциях оба эти условия выполняются и поэтому принцип независимости действия сил при расчетах на прочность и жесткость широко применяется.
4. Принцип Сен-Венана. В точках тела, достаточно удаленных от мест приложения нагрузок, величина внутренних сил весьма мало зависит от конкретного способа приложения этих нагрузок. Этот принцип во многих случаях позволяет производить замену одной системы сил другой системой, статически эквивалентной, что позволяет упростить расчет.