Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Все лекции сопромат.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
4.12 Mб
Скачать

7.3. Метод начальных параметров

Метод начальных параметров получил широкое применение при решении различных инженерных задач. Его разработали советские ученые Н.П. Пузыревский, Н.К. Снитко, Н.И. Безухое, А.А. Уманский и др.

Для того чтобы сократить число неизвестных произвольных постоянных интегрирования до двух, необходимо обеспечить равенство соответствующих постоянных на всех участках балки. Это равенство будет соблюдаться, если в уравнениях моментов, углов поворота и прогибов при переходе от участка к участку повторяются все силовые факторы предыдущего участка, а вновь появляющиеся слагаемые обращаются в нуль на левых границах своих силовых участков. Для обеспечения этих условий при составлении дифференциальных уравнений упругой линии и их интегрировании должны соблюдаться следующие условия:

  1. Начало координат (общее для всех силовых участков) выбирается на конце балки:

  • если есть заделка, то в заделке;

  • если на конце есть опора, то на опоре;

  • если на обоих концах консоли, то безразлично, на каком конце начало координат.

  1. При составлении уравнения для конкретного сечения учитываются нагрузки, расположенные от начала координат до сечения; распределенная нагрузка q продолжается до сечения в соответствии с правилами Клебша. При наличии сосредоточенного момента М его значение представлять в виде произведения М(z - l)0, где l – расстояние от начала координат до сечения, в котором этот момент приложен.

3. При действии распределенной нагрузки, не доходящей до правого конца рассматриваемого участка, она продолжается до этого конца и одновременно уравновешивается противоположно направленной нагрузкой той же интенсивности («дополнительная» и «уравновешивающая» нагрузки показываются на рисунках штриховыми линиями).

  1. Интегрировать уравнение на всех участках, не раскрывая скобок.

Рассмотрим балку (рис. 7.2) с постоянным поперечным сечением, нагруженную взаимоуравновешенной системой положительных силовых факторов (т.е. вызывающих вертикальные перемещения сечений балки в положительном направлении оси z). Начало системы координат поместим на левом конце балки так, чтобы ось x проходила вдоль оси балки, а ось z была бы направлена вверх.

На балку действуют: момент М, сосредоточенная сила F и равномерно распределенная на участке бруса нагрузка интенсивностью q (рис. 7.2).

Рис. 7.2

Задача заключается в том, чтобы выявить особенности, вносимые в уравнение упругой линии, различными типами внешних силовых факторов. Для этого составим выражение изгибающих моментов для каждого из пяти участков заданной системы.

У

x

часток I ( 0 xl1 )  M(x) = 0.

Участок II (l1xl2 )  My (x) = M.

Участок III (l2xl3 )  My (x) = M + F (x  l2).

Участок IV (l3x l4)  My (z) = M + F (x  l2) +  .

Участок V (l х  l5) Mу (х) = M + F (х  l2) +  .

На участке V, где распределенная нагрузка отсутствует, при выводе выражения для изгибающего момента с целью сохранения рекуррентности формул для разных участков была приложена взаимоуравновешенная распределенная нагрузка.

Для вывода обобщенного выражения изгибающего момента введем следующий оператор , означающий, что члены выражения, стоящие перед ним, следует учитывать при хli и игнорировать при х  li . На основании этого обобщенное выражение момента Mу (х) для произвольного сечения х может быть записано единой формулой:

Mу(х) = M +F (х  l2 + . (7.4)

Подставляя (7.4) в (7.3) и дважды интегрируя, получим выражение для прогибов:

E Iу z (x) = C0 + Cx+ + +

. (7.5)

Постоянные интегрирования C0 и C1 по своей сути означают:

C0 = E Iy z (0) , C= (7.6)

и определяются из граничных условий на левом конце балки. Тогда формула для прогибов примет следующий окончательный вид:

E Iy z(x) = E Iyz x + + +

+ . (7.7)

Соответственно формула для углов поворотов сечений балки определяется из (7.7) простым дифференцированием:

E Iy  (x) =  + + +

. (7.8)

Как видно, для определения прогибов и углов поворота балок данным методом начальных параметров достаточно знание лишь значений прогиба z, угла поворота 0 в начале системы координат, т.е. так называемых начальных параметров. Поэтому данный метод и называется методом начальных параметров.