
- •Сопротивление материалов
- •Основные обозначения
- •Лекция 1. Основные понятия и исходные положения
- •1.1. Введение
- •1.2. Основные понятия и исходные положения
- •1.2.1. Реальный объект и расчетная схема
- •1.2.2. Основные гипотезы и допущения сопротивления материалов
- •1.2.3. Внешние силы (нагрузки)
- •1.3. Метод сечений
- •1.3.1. Внутренние силы
- •1.3.2. Понятие о напряжениях
- •1.4. Понятия о перемещениях и деформациях
- •Вопросы для самопроверки
- •Лекция 2. Центральное растяжение (сжатие)
- •2.1. Внутренние силы при растяжении
- •2. 2. Нормальные напряжения и условие прочности
- •2.3. Механические испытания материалов при растяжении (сжатии)
- •2.4. Потенциальная энергия деформации
- •Вопросы для самопроверки
- •Лекция 3. Теория напряженного и деформированного состояний
- •3.1. Главные площадки и главные напряжения
- •Напряженным состоянием тела в точке называют совокупность нормальных и касательных напряжений, действующих по всем площадкам (сечениям), содержащим данную точку.
- •3.2. Виды напряженного состояния
- •3.2.1. Линейное напряженное состояние
- •3.2.2. Плоское напряженное состояние
- •Рассмотрим частные случаи плоского напряженного состояния.
- •3.2.3. Объемное напряженное состояние
- •3.3. Обобщенный закон Гука
- •3.4. Теории прочности
- •Вторая теория прочности – теория наибольших деформаций – впервые была высказана французскими учеными Мариоттом и Навье, а затем поддержана Понселе и Сен-Венаном.
- •Вопросы для самопроверки
- •Лекция 4. Геометрические характеристики плоских сечений
- •4.1. Статические моменты сечений
- •4.2. Моменты инерции сечений
- •4.2.1. Изменение моментов инерции при параллельном переносе осей
- •4.2.2. Изменение моментов инерции сечения при повороте осей
- •4.3. Главные оси инерции и главные моменты инерции
- •4.4. Моменты инерции простых сечений
- •4.4.1. Прямоугольник
- •4.4.2. Треугольник
- •4.4.3. Круг
- •4.4.4. Кольцо
- •Вопросы для самопроверки
- •Лекция 5. Кручение прямого бруса
- •1. Построение эпюр крутящих моментов.
- •2. Напряжения в поперечном сечении.
- •3. Условия прочности и жесткости при кручении.
- •5.1. Построение эпюр крутящих моментов
- •5.2. Напряжения в поперечном сечении
- •5.3. Условия прочности и жесткости при кручении вала
- •5.4. Потенциальная энергия деформации при кручении
- •Вопросы для самопроверки
- •Лекция 6. Плоский изгиб
- •6.1. Построение эпюр поперечной силы и изгибающего момента
- •Решение
- •6.2. Напряжения при чистом изгибе
- •6.3. Напряжения при поперечном изгибе
- •6.4. Перемещения при плоском изгибе
- •Вопросы для самопроверки
- •Лекция 7. Перемещения в балках при чистом изгибе
- •7.1. Линейные и угловые перемещения в балках при прямом изгибе
- •7.2. Определение перемещений путем интегрирования уравнения изогнутой оси балки
- •7.3. Метод начальных параметров
- •7.4. Пример расчета
- •Вопросы для самопроверки
- •Лекция 8. Сложное сопротивление
- •1. Косой изгиб.
- •2. Внецентренное растяжение (сжатие).
- •3. Кручение с изгибом.
- •8.1. Косой изгиб
- •8.2. Внецентренное растяжение (сжатие)
- •8.2.1. Расчет напряжений при внецентренном растяжении (сжатии)
- •8.2.2. Свойства нулевой линии
- •8.2.3. Ядро сечения
- •8.3. Кручение с изгибом
- •Вопросы для самопроверки
- •Лекция 9.Устойчивость сжатых стержней
- •2. Влияние способов закрепления концов стержня на критическую силу.
- •9.1. Понятие об устойчивости. Задача Эйлера
- •9.2. Влияние способов закрепления концов стержня на критическую силу
- •9.3. Пределы применимости формулы Эйлера
- •9.4. Расчет стержней на устойчивость по коэффициенту снижения допускаемых напряжений
- •Относительный радиус инерции
- •Вопросы для самопроверки
- •Лекция 10. Динамическое действие нагрузок. Усталость
- •1. Динамическое действие нагрузок.
- •10.1. Динамическое действие нагрузок
- •10.1.1. Вычисление напряжений при равноускоренном движении
- •10.1.2. Определение перемещений и напряжений при ударе
- •10.1.3. Частные случаи
- •10.2. Прочность при циклически меняющихся напряжениях
- •10.2.1. Влияние концентраций напряжений, состояния поверхности и размеров детали на усталостную прочность
- •10.2.2. Запас усталостной прочности и его определение
- •Вопросы для самопроверки
- •Литература
- •Оглавление
- •Вопросы для самопроверки…………………………………………………...104
7.3. Метод начальных параметров
Метод начальных параметров получил широкое применение при решении различных инженерных задач. Его разработали советские ученые Н.П. Пузыревский, Н.К. Снитко, Н.И. Безухое, А.А. Уманский и др.
Для того чтобы сократить число неизвестных произвольных постоянных интегрирования до двух, необходимо обеспечить равенство соответствующих постоянных на всех участках балки. Это равенство будет соблюдаться, если в уравнениях моментов, углов поворота и прогибов при переходе от участка к участку повторяются все силовые факторы предыдущего участка, а вновь появляющиеся слагаемые обращаются в нуль на левых границах своих силовых участков. Для обеспечения этих условий при составлении дифференциальных уравнений упругой линии и их интегрировании должны соблюдаться следующие условия:
Начало координат (общее для всех силовых участков) выбирается на конце балки:
если есть заделка, то в заделке;
если на конце есть опора, то на опоре;
если на обоих концах консоли, то безразлично, на каком конце начало координат.
При составлении уравнения для конкретного сечения учитываются нагрузки, расположенные от начала координат до сечения; распределенная нагрузка q продолжается до сечения в соответствии с правилами Клебша. При наличии сосредоточенного момента М его значение представлять в виде произведения М(z - l)0, где l – расстояние от начала координат до сечения, в котором этот момент приложен.
3. При действии распределенной нагрузки, не доходящей до правого конца рассматриваемого участка, она продолжается до этого конца и одновременно уравновешивается противоположно направленной нагрузкой той же интенсивности («дополнительная» и «уравновешивающая» нагрузки показываются на рисунках штриховыми линиями).
Интегрировать уравнение на всех участках, не раскрывая скобок.
Рассмотрим балку (рис. 7.2) с постоянным поперечным сечением, нагруженную взаимоуравновешенной системой положительных силовых факторов (т.е. вызывающих вертикальные перемещения сечений балки в положительном направлении оси z). Начало системы координат поместим на левом конце балки так, чтобы ось x проходила вдоль оси балки, а ось z была бы направлена вверх.
На балку действуют: момент М, сосредоточенная сила F и равномерно распределенная на участке бруса нагрузка интенсивностью q (рис. 7.2).
Рис. 7.2
Задача заключается в том, чтобы выявить особенности, вносимые в уравнение упругой линии, различными типами внешних силовых факторов. Для этого составим выражение изгибающих моментов для каждого из пяти участков заданной системы.
У
x
Участок II (l1 x l2 ) My (x) = M.
Участок III (l2 x l3 ) My (x) = M + F (x l2).
Участок
IV (l3
x
l4)
My (z) = M + F (x l2) +
.
Участок
V (l4 х l5)
Mу (х) = M + F (х l2) +
.
На участке V, где распределенная нагрузка отсутствует, при выводе выражения для изгибающего момента с целью сохранения рекуррентности формул для разных участков была приложена взаимоуравновешенная распределенная нагрузка.
Для
вывода обобщенного
выражения изгибающего момента введем
следующий оператор
,
означающий, что члены выражения, стоящие
перед ним, следует учитывать при х> li
и игнорировать при х li .
На основании этого обобщенное выражение
момента Mу (х)
для произвольного сечения х
может быть записано единой формулой:
Mу(х) = M
+F (х l2)
+
.
(7.4)
Подставляя (7.4) в (7.3) и дважды интегрируя, получим выражение для прогибов:
E Iу z (x) = C0 + C1 x+
+
+
.
(7.5)
Постоянные интегрирования C0 и C1 по своей сути означают:
C0 = E Iy z (0) ,
C1 =
(7.6)
и определяются из граничных условий на левом конце балки. Тогда формула для прогибов примет следующий окончательный вид:
E Iy z(x) = E Iyz0 +
x +
+
+
+
.
(7.7)
Соответственно формула для углов поворотов сечений балки определяется из (7.7) простым дифференцированием:
E Iy (x) =
+
+
+
–
.
(7.8)
Как видно, для определения прогибов и углов поворота балок данным методом начальных параметров достаточно знание лишь значений прогиба z0 , угла поворота 0 в начале системы координат, т.е. так называемых начальных параметров. Поэтому данный метод и называется методом начальных параметров.