
- •Сопротивление материалов
- •Основные обозначения
- •Лекция 1. Основные понятия и исходные положения
- •1.1. Введение
- •1.2. Основные понятия и исходные положения
- •1.2.1. Реальный объект и расчетная схема
- •1.2.2. Основные гипотезы и допущения сопротивления материалов
- •1.2.3. Внешние силы (нагрузки)
- •1.3. Метод сечений
- •1.3.1. Внутренние силы
- •1.3.2. Понятие о напряжениях
- •1.4. Понятия о перемещениях и деформациях
- •Вопросы для самопроверки
- •Лекция 2. Центральное растяжение (сжатие)
- •2.1. Внутренние силы при растяжении
- •2. 2. Нормальные напряжения и условие прочности
- •2.3. Механические испытания материалов при растяжении (сжатии)
- •2.4. Потенциальная энергия деформации
- •Вопросы для самопроверки
- •Лекция 3. Теория напряженного и деформированного состояний
- •3.1. Главные площадки и главные напряжения
- •Напряженным состоянием тела в точке называют совокупность нормальных и касательных напряжений, действующих по всем площадкам (сечениям), содержащим данную точку.
- •3.2. Виды напряженного состояния
- •3.2.1. Линейное напряженное состояние
- •3.2.2. Плоское напряженное состояние
- •Рассмотрим частные случаи плоского напряженного состояния.
- •3.2.3. Объемное напряженное состояние
- •3.3. Обобщенный закон Гука
- •3.4. Теории прочности
- •Вторая теория прочности – теория наибольших деформаций – впервые была высказана французскими учеными Мариоттом и Навье, а затем поддержана Понселе и Сен-Венаном.
- •Вопросы для самопроверки
- •Лекция 4. Геометрические характеристики плоских сечений
- •4.1. Статические моменты сечений
- •4.2. Моменты инерции сечений
- •4.2.1. Изменение моментов инерции при параллельном переносе осей
- •4.2.2. Изменение моментов инерции сечения при повороте осей
- •4.3. Главные оси инерции и главные моменты инерции
- •4.4. Моменты инерции простых сечений
- •4.4.1. Прямоугольник
- •4.4.2. Треугольник
- •4.4.3. Круг
- •4.4.4. Кольцо
- •Вопросы для самопроверки
- •Лекция 5. Кручение прямого бруса
- •1. Построение эпюр крутящих моментов.
- •2. Напряжения в поперечном сечении.
- •3. Условия прочности и жесткости при кручении.
- •5.1. Построение эпюр крутящих моментов
- •5.2. Напряжения в поперечном сечении
- •5.3. Условия прочности и жесткости при кручении вала
- •5.4. Потенциальная энергия деформации при кручении
- •Вопросы для самопроверки
- •Лекция 6. Плоский изгиб
- •6.1. Построение эпюр поперечной силы и изгибающего момента
- •Решение
- •6.2. Напряжения при чистом изгибе
- •6.3. Напряжения при поперечном изгибе
- •6.4. Перемещения при плоском изгибе
- •Вопросы для самопроверки
- •Лекция 7. Перемещения в балках при чистом изгибе
- •7.1. Линейные и угловые перемещения в балках при прямом изгибе
- •7.2. Определение перемещений путем интегрирования уравнения изогнутой оси балки
- •7.3. Метод начальных параметров
- •7.4. Пример расчета
- •Вопросы для самопроверки
- •Лекция 8. Сложное сопротивление
- •1. Косой изгиб.
- •2. Внецентренное растяжение (сжатие).
- •3. Кручение с изгибом.
- •8.1. Косой изгиб
- •8.2. Внецентренное растяжение (сжатие)
- •8.2.1. Расчет напряжений при внецентренном растяжении (сжатии)
- •8.2.2. Свойства нулевой линии
- •8.2.3. Ядро сечения
- •8.3. Кручение с изгибом
- •Вопросы для самопроверки
- •Лекция 9.Устойчивость сжатых стержней
- •2. Влияние способов закрепления концов стержня на критическую силу.
- •9.1. Понятие об устойчивости. Задача Эйлера
- •9.2. Влияние способов закрепления концов стержня на критическую силу
- •9.3. Пределы применимости формулы Эйлера
- •9.4. Расчет стержней на устойчивость по коэффициенту снижения допускаемых напряжений
- •Относительный радиус инерции
- •Вопросы для самопроверки
- •Лекция 10. Динамическое действие нагрузок. Усталость
- •1. Динамическое действие нагрузок.
- •10.1. Динамическое действие нагрузок
- •10.1.1. Вычисление напряжений при равноускоренном движении
- •10.1.2. Определение перемещений и напряжений при ударе
- •10.1.3. Частные случаи
- •10.2. Прочность при циклически меняющихся напряжениях
- •10.2.1. Влияние концентраций напряжений, состояния поверхности и размеров детали на усталостную прочность
- •10.2.2. Запас усталостной прочности и его определение
- •Вопросы для самопроверки
- •Литература
- •Оглавление
- •Вопросы для самопроверки…………………………………………………...104
Лекция 7. Перемещения в балках при чистом изгибе
Вопросы лекции:
1. Линейные и угловые перемещения в балках при прямом изгибе.
2. Определение перемещений путем интегрирования уравнения изогнутой оси балки.
3. Метод начальных параметров.
7.1. Линейные и угловые перемещения в балках при прямом изгибе
В предыдущей лекции были рассмотрены вопросы, относящиеся к расчету балок на прочность. Однако в большинстве случаев практического расчета деталей, работающих на изгиб, необходимо также производить расчет их на жесткость.
Под расчетом на жесткость понимается оценка упругой податливости балки под действием нагрузок и подбор таких размеров поперечного сечения, при которых перемещения не будут превышать допускаемых величин. Для выполнения таких расчетов необходимо научиться вычислять перемещения попереч- ных сечений балки под действием любой внешней нагрузки. Кроме того, перемещения приходится определять и при расчете статически неопределимых конструкций (балок, рам, арок и т.д.).
В основе теории деформации при изгибе лежит гипотеза плоских сечений. Учитываются деформации только от изгибающего момента, деформациями от поперечной силы пренебрегают как малыми.
С учетом принятых допущений рассмотрим деформацию балки при прямом изгибе. Под действием внешних нагрузок, расположенных в одной из главных плоскостей балки, наблюдается искривление ее оси в той же плоскости, происходит так называемый прямой изгиб. Поперечные сечения при этом поворачиваются и одновременно получают поступательные перемещения (рис. 7.1).
x
z
Рис. 7.1
Искривленная ось балки называется упругой линией.
Перемещение центра тяжести сечения по направлению, перпендикулярному к недеформированной оси балки, называется прогибом балки в данном сечении и обозначается z.
Прогибы и углы поворотов в балках являются функциями координаты x и их определение необходимо для расчета жесткости. Рассмотрим изгиб стержня в одной из главных плоскостей, например в плоскости xz. Как показывает практика, в составе реальных сооружений стержни испытывают весьма малые искривления (zmax/l = 102 …103, где zmax – максимальный прогиб; l – пролет балки).
7.2. Определение перемещений путем интегрирования уравнения изогнутой оси балки
В этом случае неизвестными функциями, определяющими положение точек поперечных сечений балки, являются z(x) и (x) = (x) (рис. 7.1). Совокупность значений этих параметров по длине балки образуют две функции от координаты х функцию перемещений z(х) и функцию углов поворота (х). Из геометрических построений (рис. 7.1) наглядно видно, что угол наклона касательной к оси х и угол поворота поперечных сечений при произвольном х равны между собой. В силу малости углов поворота можно записать
.
(7.1)
Из курса математического анализа известно, что кривизна плоской кривой z(х) выражается следующей формулой:
.
Однако
в связи с малостью величины
по сравнению с единицей последнее
выражение можно существенно упростить,
и тогда
.
(7.2)
Учитывая
выражение, полученное в предыдущей
лекции,
,
из (7.2) получим следующее важное
дифференциальное соотношение:
,
(7.3)
где Iу момент инерции поперечного сечения балки относительно ее нейтральной оси; Е модуль упругости материала; E Iу изгибная жесткость балки.
Уравнение (7.3), строго говоря, справедливо для случая чистого изгиба балки, т.е. когда изгибающий момент Mу (х) имеет постоянное значение, а поперечная сила равна нулю. Однако это уравнение используется и в случае поперечного изгиба, что равносильно пренебрежению искривлениями поперечных сечений за счет сдвигов на основании гипотезы плоских сечений.
Введем еще одно упрощение, связанное с углом поворота поперечного сечения. Если изогнутая ось балки является достаточно пологой кривой, то углы поворота сечений с высокой степенью точности можно принимать равными первой производной от прогибов. Отсюда следует, что прогиб балки принимает экстремальные значения в тех сечениях, где поворот равен нулю.
В общем случае, для того чтобы найти функции прогибов z(х) и углов поворота (х), необходимо решить уравнение (7.3) с учетом граничных условий между смежными участками.
Для балки, имеющей несколько участков, определение формы упругой линии является достаточно сложной задачей. Уравнение (7.3), записанное для каждого участка, после интегрирования содержит две произвольные постоянные.
На границах соседних участков прогибы и углы поворота являются непрерывными функциями. Данное обстоятельство позволяет определить необходимое число граничных условий для вычисления произвольных постоянных интегрирования.
Если балка имеет n - конечное число участков, из 2n числа граничных условий получим 2n алгебраических уравнений относительно 2n постоянных интегрирования.
Если момент и жесткость являются непрерывными по всей длине балки функциями Mу (х) и E Iу (х), то решение может быть получено как результат последовательного интегрирования уравнения (7.3) по всей длине балки:
интегрируя один раз, получаем закон изменения углов поворота:
,
интегрируя еще раз, получаем функцию прогибов:
.
Здесь C1 и С2 – произвольные постоянные интегрирования – должны быть определены из граничных условий.
Если балка имеет постоянное поперечное сечение по длине, то для определения функций прогибов и углов поворота удобно применить метод начальных параметров.