
- •Сопротивление материалов
- •Основные обозначения
- •Лекция 1. Основные понятия и исходные положения
- •1.1. Введение
- •1.2. Основные понятия и исходные положения
- •1.2.1. Реальный объект и расчетная схема
- •1.2.2. Основные гипотезы и допущения сопротивления материалов
- •1.2.3. Внешние силы (нагрузки)
- •1.3. Метод сечений
- •1.3.1. Внутренние силы
- •1.3.2. Понятие о напряжениях
- •1.4. Понятия о перемещениях и деформациях
- •Вопросы для самопроверки
- •Лекция 2. Центральное растяжение (сжатие)
- •2.1. Внутренние силы при растяжении
- •2. 2. Нормальные напряжения и условие прочности
- •2.3. Механические испытания материалов при растяжении (сжатии)
- •2.4. Потенциальная энергия деформации
- •Вопросы для самопроверки
- •Лекция 3. Теория напряженного и деформированного состояний
- •3.1. Главные площадки и главные напряжения
- •Напряженным состоянием тела в точке называют совокупность нормальных и касательных напряжений, действующих по всем площадкам (сечениям), содержащим данную точку.
- •3.2. Виды напряженного состояния
- •3.2.1. Линейное напряженное состояние
- •3.2.2. Плоское напряженное состояние
- •Рассмотрим частные случаи плоского напряженного состояния.
- •3.2.3. Объемное напряженное состояние
- •3.3. Обобщенный закон Гука
- •3.4. Теории прочности
- •Вторая теория прочности – теория наибольших деформаций – впервые была высказана французскими учеными Мариоттом и Навье, а затем поддержана Понселе и Сен-Венаном.
- •Вопросы для самопроверки
- •Лекция 4. Геометрические характеристики плоских сечений
- •4.1. Статические моменты сечений
- •4.2. Моменты инерции сечений
- •4.2.1. Изменение моментов инерции при параллельном переносе осей
- •4.2.2. Изменение моментов инерции сечения при повороте осей
- •4.3. Главные оси инерции и главные моменты инерции
- •4.4. Моменты инерции простых сечений
- •4.4.1. Прямоугольник
- •4.4.2. Треугольник
- •4.4.3. Круг
- •4.4.4. Кольцо
- •Вопросы для самопроверки
- •Лекция 5. Кручение прямого бруса
- •1. Построение эпюр крутящих моментов.
- •2. Напряжения в поперечном сечении.
- •3. Условия прочности и жесткости при кручении.
- •5.1. Построение эпюр крутящих моментов
- •5.2. Напряжения в поперечном сечении
- •5.3. Условия прочности и жесткости при кручении вала
- •5.4. Потенциальная энергия деформации при кручении
- •Вопросы для самопроверки
- •Лекция 6. Плоский изгиб
- •6.1. Построение эпюр поперечной силы и изгибающего момента
- •Решение
- •6.2. Напряжения при чистом изгибе
- •6.3. Напряжения при поперечном изгибе
- •6.4. Перемещения при плоском изгибе
- •Вопросы для самопроверки
- •Лекция 7. Перемещения в балках при чистом изгибе
- •7.1. Линейные и угловые перемещения в балках при прямом изгибе
- •7.2. Определение перемещений путем интегрирования уравнения изогнутой оси балки
- •7.3. Метод начальных параметров
- •7.4. Пример расчета
- •Вопросы для самопроверки
- •Лекция 8. Сложное сопротивление
- •1. Косой изгиб.
- •2. Внецентренное растяжение (сжатие).
- •3. Кручение с изгибом.
- •8.1. Косой изгиб
- •8.2. Внецентренное растяжение (сжатие)
- •8.2.1. Расчет напряжений при внецентренном растяжении (сжатии)
- •8.2.2. Свойства нулевой линии
- •8.2.3. Ядро сечения
- •8.3. Кручение с изгибом
- •Вопросы для самопроверки
- •Лекция 9.Устойчивость сжатых стержней
- •2. Влияние способов закрепления концов стержня на критическую силу.
- •9.1. Понятие об устойчивости. Задача Эйлера
- •9.2. Влияние способов закрепления концов стержня на критическую силу
- •9.3. Пределы применимости формулы Эйлера
- •9.4. Расчет стержней на устойчивость по коэффициенту снижения допускаемых напряжений
- •Относительный радиус инерции
- •Вопросы для самопроверки
- •Лекция 10. Динамическое действие нагрузок. Усталость
- •1. Динамическое действие нагрузок.
- •10.1. Динамическое действие нагрузок
- •10.1.1. Вычисление напряжений при равноускоренном движении
- •10.1.2. Определение перемещений и напряжений при ударе
- •10.1.3. Частные случаи
- •10.2. Прочность при циклически меняющихся напряжениях
- •10.2.1. Влияние концентраций напряжений, состояния поверхности и размеров детали на усталостную прочность
- •10.2.2. Запас усталостной прочности и его определение
- •Вопросы для самопроверки
- •Литература
- •Оглавление
- •Вопросы для самопроверки…………………………………………………...104
6.2. Напряжения при чистом изгибе
Рассмотрим наиболее простой случай изгиба, называемый чистым изгибом. Как было отмечено выше, под чистым изгибом понимается такой вид сопротивления, при котором в поперечных сечениях бруса возникают только изгибающие моменты, а поперечные силы равны нулю. Процесс формирования деформаций при чистом изгибе может рассматриваться как результат поворота плоских поперечных сечений относительно друг друга.
Определим нормальные напряжения, возникающие при чистом изгибе балки, находящейся под действием моментов Му. В произвольной точке балки (рис. 6.5, т. А) в общем случае могут возникать нормальные напряжения как вдоль продольной оси σх, так и вдоль поперечных осей σy, σz.
Однако
экспериментально установлено, что
нормальные напряжения σy,
σz
пренебрежимо малы по сравнению с
напряжениями σx.
Принимается так называемая гипотеза
ненадавливания продольных волокон
σy
= 0, σz
= 0. Поэтому можно принять, что материал
балки находится при линейном напряженном
состоянии вдоль оси x,
и деформации подчиняются закону Гука.
То есть нормальные напряжения при изгибе
можно определить из формулы
.
Установим закон изменения деформаций
при изгибе балки. Экспериментально
получено, что в деформируемой балке
поперечные сечения плоские до деформации
остаются плоскими и поперечными после
деформации, имеет место гипотеза
плоских сечений.
При этом верхние волокна удлиняются,
нижние – укорачиваются, а продольная
линия не меняет своей длины. Слой балки,
не испытывающий при изгибе ни растяжения,
ни сжатия, называется нейтральным
слоем. Линия
пересечения нейтрального слоя и плоскости
поперечного сечения называется
нейтральной
линией.
Определим относительную деформацию волокна ав εx (далее будем обозначать ее просто ε).
,
где r – радиус кривизны нейтрального слоя,
z – расстояние от нейтрального слоя до рассматриваемого волокна балки.
Подставляя
это соотношение в закон Гука, получим:
e
,
(6.3)
т.е. напряжения s линейно зависят от координаты z.
Используя интегральную связь между напряжениями и изгибающим моментом
,
подставляя в него соотношение (6.3), получим
,
где
– осевой момент инерции сечения.
Подставляя полученное выражение в (6.3), имеем формулу для нормальных напряжений при изгибе
.
(6.4)
Эпюра нормальных напряжений показана на рис. 6.5. Как видно, на нейтральной линии они равны нулю, максимального значения напряжения достигают в крайних верхних и нижних волокнах балки:
.
Обозначая
,
получим формулу для максимальных
напряжений в произвольном сечении
,
где Wу – осевой момент сопротивления сечения изгибу, геометрическая характеристика поперечного сечения.
Максимальное нормальное напряжение в балке возникает в сечении, где изгибающий момент достигает наибольшей по модулю величины, т.е. в опасном сечении
.
Условие прочности при изгибе формулируется следующим образом: балка будет прочной, если максимальные нормальные напряжения не превысят допускаемых напряжений
.
Величина допускаемых напряжений назначается в зависимости от материала, из которого изготовлена балка.
Пластичные материалы обладают примерно равными пределами текучести на сжатие тс и на растяжение тр , равны между собой и поэтому [c]=[p]=[].
Для хрупких материалов, у которых прочность при сжатии выше, чем при растяжении, допускаемые напряжения на растяжение и сжатие, как правило, не равны между собой [c][p] и поэтому необходимо записывать два условия прочности
,
,
где ymax p и ymax c – расстояния от нейтральной оси до наиболее удаленных растянутого и сжатого волокон.