
- •Сопротивление материалов
- •Основные обозначения
- •Лекция 1. Основные понятия и исходные положения
- •1.1. Введение
- •1.2. Основные понятия и исходные положения
- •1.2.1. Реальный объект и расчетная схема
- •1.2.2. Основные гипотезы и допущения сопротивления материалов
- •1.2.3. Внешние силы (нагрузки)
- •1.3. Метод сечений
- •1.3.1. Внутренние силы
- •1.3.2. Понятие о напряжениях
- •1.4. Понятия о перемещениях и деформациях
- •Вопросы для самопроверки
- •Лекция 2. Центральное растяжение (сжатие)
- •2.1. Внутренние силы при растяжении
- •2. 2. Нормальные напряжения и условие прочности
- •2.3. Механические испытания материалов при растяжении (сжатии)
- •2.4. Потенциальная энергия деформации
- •Вопросы для самопроверки
- •Лекция 3. Теория напряженного и деформированного состояний
- •3.1. Главные площадки и главные напряжения
- •Напряженным состоянием тела в точке называют совокупность нормальных и касательных напряжений, действующих по всем площадкам (сечениям), содержащим данную точку.
- •3.2. Виды напряженного состояния
- •3.2.1. Линейное напряженное состояние
- •3.2.2. Плоское напряженное состояние
- •Рассмотрим частные случаи плоского напряженного состояния.
- •3.2.3. Объемное напряженное состояние
- •3.3. Обобщенный закон Гука
- •3.4. Теории прочности
- •Вторая теория прочности – теория наибольших деформаций – впервые была высказана французскими учеными Мариоттом и Навье, а затем поддержана Понселе и Сен-Венаном.
- •Вопросы для самопроверки
- •Лекция 4. Геометрические характеристики плоских сечений
- •4.1. Статические моменты сечений
- •4.2. Моменты инерции сечений
- •4.2.1. Изменение моментов инерции при параллельном переносе осей
- •4.2.2. Изменение моментов инерции сечения при повороте осей
- •4.3. Главные оси инерции и главные моменты инерции
- •4.4. Моменты инерции простых сечений
- •4.4.1. Прямоугольник
- •4.4.2. Треугольник
- •4.4.3. Круг
- •4.4.4. Кольцо
- •Вопросы для самопроверки
- •Лекция 5. Кручение прямого бруса
- •1. Построение эпюр крутящих моментов.
- •2. Напряжения в поперечном сечении.
- •3. Условия прочности и жесткости при кручении.
- •5.1. Построение эпюр крутящих моментов
- •5.2. Напряжения в поперечном сечении
- •5.3. Условия прочности и жесткости при кручении вала
- •5.4. Потенциальная энергия деформации при кручении
- •Вопросы для самопроверки
- •Лекция 6. Плоский изгиб
- •6.1. Построение эпюр поперечной силы и изгибающего момента
- •Решение
- •6.2. Напряжения при чистом изгибе
- •6.3. Напряжения при поперечном изгибе
- •6.4. Перемещения при плоском изгибе
- •Вопросы для самопроверки
- •Лекция 7. Перемещения в балках при чистом изгибе
- •7.1. Линейные и угловые перемещения в балках при прямом изгибе
- •7.2. Определение перемещений путем интегрирования уравнения изогнутой оси балки
- •7.3. Метод начальных параметров
- •7.4. Пример расчета
- •Вопросы для самопроверки
- •Лекция 8. Сложное сопротивление
- •1. Косой изгиб.
- •2. Внецентренное растяжение (сжатие).
- •3. Кручение с изгибом.
- •8.1. Косой изгиб
- •8.2. Внецентренное растяжение (сжатие)
- •8.2.1. Расчет напряжений при внецентренном растяжении (сжатии)
- •8.2.2. Свойства нулевой линии
- •8.2.3. Ядро сечения
- •8.3. Кручение с изгибом
- •Вопросы для самопроверки
- •Лекция 9.Устойчивость сжатых стержней
- •2. Влияние способов закрепления концов стержня на критическую силу.
- •9.1. Понятие об устойчивости. Задача Эйлера
- •9.2. Влияние способов закрепления концов стержня на критическую силу
- •9.3. Пределы применимости формулы Эйлера
- •9.4. Расчет стержней на устойчивость по коэффициенту снижения допускаемых напряжений
- •Относительный радиус инерции
- •Вопросы для самопроверки
- •Лекция 10. Динамическое действие нагрузок. Усталость
- •1. Динамическое действие нагрузок.
- •10.1. Динамическое действие нагрузок
- •10.1.1. Вычисление напряжений при равноускоренном движении
- •10.1.2. Определение перемещений и напряжений при ударе
- •10.1.3. Частные случаи
- •10.2. Прочность при циклически меняющихся напряжениях
- •10.2.1. Влияние концентраций напряжений, состояния поверхности и размеров детали на усталостную прочность
- •10.2.2. Запас усталостной прочности и его определение
- •Вопросы для самопроверки
- •Литература
- •Оглавление
- •Вопросы для самопроверки…………………………………………………...104
4.1. Статические моменты сечений
Статическим моментом Sz сечения относительно оси z называется геометрическая характеристика, определяемая интегралом вида
,
(4.1)
где у – расстояние от элементарной площадки dA до оси z.
Если отождествить площадь с силой, действующей перпендикулярно плоскости чертежа, то интеграл (4.1) можно рассматривать как сумму моментов сил относительно оси z. По известной из теоретической механики теореме Вариньона о моменте равнодействующей можно написать
,
(4.2)
где A – площадь сечения (представляет собой равнодействующую);
ус – координата (плечо равнодействующей);
с – центр тяжести сечения.
Аналогично статический момент относительно оси у равен
,
(4.3)
откуда следуют формулы для определения координат центра тяжести
;
.
(4.4)
Статические
моменты могут быть положительными,
отрицательными и равными нулю. В
частности, относительно любых центральных
осей, проходящих через центр тяжести С
(оси обозначаются хс,
ус),
статические моменты
.
Размерность статических моментов м3.
Для вычисления статического момента сложной фигуры ее разбивают на части, для каждой из которых известна площадь и положение центра тяжести (zс, ус):
;
.
(4.5)
Таким образом, статический момент сложного сечения относительно некоторой оси равен сумме статических моментов всех частей сечения относительно той же оси.
4.2. Моменты инерции сечений
К геометрическим характеристикам плоских сечений относятся также моменты инерции. Различают осевые, полярные и центробежные моменты сечений.
Осевым моментом инерции сечения называется взятая по всему сечению сумма произведений элементарных площадок на квадраты их расстояний до некоторой оси, лежащей в плоскости рассматриваемого сечения. Так, относительно осей у и z (рис. 4.1) осевые моменты инерции определяются интегралами вида:
;
.
(4.6)
Величина осевого момента инерции служит характеристикой способности балки сопротивляться деформации изгиба.
Полярным моментом инерции сечения называется взятая по всему сечению сумма произведений элементарных площадок на квадраты их расстояний до некоторой точки О сечения (рис. 4.1):
,
(4.7)
где r – расстояние от площадки dА до полюса.
Полярный момент инерции характеризует способность сечения сопротивляться деформации кручения.
Центробежным моментом инерции сечения относительно осей Оу и Оz называется взятая по всему сечению сумма произведений элементарных площадок на расстояния их до этих осей. Центробежный момент инерции сечения определяются интегралом
.
(4.8)
Если
полярный момент инерции вычисляется
относительно начала системы координат
(рис. 4.1), то
и
+
,
следовательно,
,
(4.9)
т.е. сумма осевых моментов инерции сечения относительно любых двух взаимно перпендикулярных осей, проходящих через данную точку, равна полярному моменту инерции этого сечения относительно этой точки.
Р
азмерность
моментов инерции м4.
Осевые и полярные моменты инерции всегда
положительны, центробежный момент
инерции может быть положительным,
отрицательным, равным нулю.
Центробежный момент инерции сечения относительно осей, хотя бы одна из которых является осью симметрии, равен нулю. Действительно для симметричной фигуры всегда можно выделить два элемента ее площади (рис. 4.2), которые имеют одинаковые ординаты у1=у2=у, и равные по величине, но противоположные по знаку абсциссы z1=z и z2=–z. Тогда
.