
- •Механика жидкостей и газов
- •Введение в механику жидкости и газа
- •2. Основные законы газового состояния и их следствия
- •3. Вязкость жидкостей и газов.
- •4. Гидростатическое давление, напоры
- •5. Свойства гидростатики
- •6 Кинематика газов и жидкости
- •Дифференциальное уравнение статики идеальной жидкости (уравнение Эйлера).
- •8. Уравнение неразрывности движения жидкостей и газов
- •9 Дифференциальные уравнения движения идеальной жидкости
- •10. Дифференциальное уравнение движения вязкой жидкости (уравнение Навье-Стокса)
- •11 Уравнение Бернулли и его физический смысл.
- •12. Уравнение Бернулли для реальных газов.
- •13 Уравнение Бернулли для печных газов.
- •14 Характер движения и теория пограничного слоя
- •15 Потери энергии при движении жидкостей и газов
- •Некоторые важные случаи применения уравнения Бернулли
- •16.1 Истечение из отверстия о острыми краями
- •16.2 Истечение из отверстия с цилиндрическим насадком и острыми краями
- •16.3 Измерение расходов различных сред с помощью
- •16.4 Измерение скорости и расхода потока
- •16. 5 Понятие об эквивалентном отверстии.
- •17. Свойства свободной струи
- •18 Особенности движения газов в печах.
- •19 Движение газов в трубопроводах, каналах и боровах.
- •20 Газослив в печах.
- •21 Движение газов с высокими скоростями
- •22 Основы расчета механики газов в печах.
- •23. Алгоритм расчета механики газов в нагревательных печах.
5. Свойства гидростатики
Гидростатика изучает законы равновесия (покоя) жидкостей и газов. Представим себе сосуд, наполненный жидкостью, находящийся в покое. Мысленно выделим в этой жидкости элементарную площадку ΔS и рассмотрим условия его равновесия, приложив к нему поверхностные силы, действующие со стороны окружающей его жидкости.(рис.2)
Рис. 2 Напряжение поверхностной силы
Из опыта известно, что жидкость оказывает сопротивление сжимающим нормальным усилием и в то же время способна деформироваться под действием как угодно малых касательных сил. Таким образом, существование силы Рт вызвала бы внутри жидкости течение, нарушая тем самым состояние покоя. Отсюда следует первое свойство: при покое жидкости силы, взаимодействующие между отдельными объёмами жидкости, а так же силы, с которыми покоящаяся жидкость действует на стенки сосудов, направлены перпендикулярно к поверхности, ограничивающей рассматриваемые объёмы жидкости.
Второе свойство или основная теорема гидростатики: гидростатическое давление в данной точке не зависит от того, как ориентирована площадка в пространстве, которой принадлежит данная точка. Иначе говоря, как бы мы не проводим сечение через некоторую точку в жидкости, гидростатическое давление на площадке, включающей в себя эту точку, будет отличаться только направлением, сохраняя свою величину.
Для различных точек жидкости величина гидростатического давления будет различной, т.е. гидростатическое давление в точке является функцией координат.
6 Кинематика газов и жидкости
В механике газов и жидкостей существует ряд понятий и определений, на основе которых построены основные закономерности. Рассмотрим их.
Представляя себе частицу жидкости (газа) исчезающее малого объема, можно говорить о том что она находится в той или иной точке пространства. С течением времени она проходит непрерывный ряд точек, совокупность которых называется троекторией данной частицы жидкости. Поскольку в данный момент времени скорость движения частиц зависит от положения частиц в пространстве, т.е. является функцией координат, можно записать W =f (x,y,z) для данного момента времени. В проекциях на оси координат времени
(16.а)
В любой точке пространства скорость может изменятся во времени, тогда в самой общей форме можно записать
(16.б)
Под установившимся движением подразумевается такое движение жидкости (газа), при котором не только скорость но и все другие характеристики жид кости (плотность, давление, силы) не зависят от времени и остаются постоянными для каждой точке пространства.
Линией тока называют воображаемую кривую, проведенную в жидкости таким образом, что каждая частица жидкости, находящаяся на ней в данный момент времени, имеет скорость, совпадающую по направлению с касательной к этой кривой. В установившемся потоке линии тока совпадают с троекториями жидких частиц (рис.3)
Рис.3 Линии тока
Рис. 4 Трубка тока
Введем понятие «трубка тока» или «элементарная струйка». Вообразим внутри жидкости произвольный замкнутый контур и предположим, что по своим размерам он очень мал. Через каждую точку этого контура можно провести линии тока, соответствующие данному моменту времени. В результате такого построения получим замкнутую цилиндрическую поверхность, состоящую из непрерывного ряда линий тока. Получим трубчатую поверхность, которая называется трубка тока или элементарная струйка (рис.4). Свойство трубки тока – частицы жидкости, находящиеся внутри нее не могут ни вытекать, ни втекать через ее боковую поверхность. Площадь сечения элементарной струйки, нормальное направление линий тока, называют живым сечением или просто сечением струйки. Жидкость может втекать и вытекать только через поперечное сечение струйки.