
- •Оглавление
- •Предисловие
- •1. Теплопроводность
- •1.1 Основной закон теплопроводности
- •Стационарная теплопроводность плоской стенки
- •Однородная стенка
- •1.2.2. Многослойная стенка
- •Стационарная теплопроводность цилиндрической стенки
- •Однородная стенка
- •1.3. 2 Многослойная стенка
- •1.3. 3 Упрощение расчетных формул (дополнительные сведения)
- •Стационарная теплопроводность шаровой стенки (дополнительные сведения)
- •Стационарная теплопроводность тел неправильной формы
- •1.6 Нестационарная теплопроводность
- •1.6.1 Общие понятия
- •1.6.2 Нагрев тел с равномерным температурным полем – «термически тонких тел»
- •1.6.2.1 Тепло на поверхность передается конвекцией.
- •1.6.3. Нагрев тел с неравномерным температурным полем. (термически массивных тел)
- •1.6.3.1 Нагрев при постоянной температуре поверхности
- •1.6.3. 2 Нагрев при постоянной плотности теплового потока через поверхность
- •1.6.3.3 Нагрев при передаче тепла конвекцией от среды с постоянной температурой
- •2 Конвективный теплообмен
- •2.1. Основные положения конвективного теплообмена
- •2. 2. Пограничный слой и уравнение теплообмена на границе раздела
- •2. 3. Дифференциальное уравнение теплопередачи конвекцией
- •2.4 Подобие и моделирование процессов конвективного теплообмена
- •2. 5 Моделирование процессов конвективного теплообмена
- •2. 6 Физический смысл критериев теплового подобия
- •2.7 Теплопередача конвекцией при свободном движении
- •2. 8 Теплопередача конвекцией в вынужденном потоке
- •2. 9 Теплообмен при продольном обтекании плиты, прямоугольного параллелепипеда
- •2.10 Значение теплопередачи конвекцией в нагревательных печах
- •3 Лучистый теплообмен
- •3.1 Общие положения
- •3.2 Основные понятия
- •3.3 Законы теплового излучения для условия равновесной среды
- •3.4 Лучистый теплообмен между двумя серыми телами
- •3.4.1 Две небольшие и далекие поверхности
- •3.4.2 Лучистый теплообмен между двумя телами,
- •3.5 Лучистый теплообмен в замкнутой системе тел
- •3.6 Теплообмен излучением при установке экранов
- •3.7 Излучение через отверстие в печных стенах
- •3.8 Теплообмен между газами и твердыми телами
- •3.8.1 Особенности излучения газов и паров
- •3.8.2 Уравнение переноса лучистой энергии
- •3.9 Лучистый теплообмен между газом и окружающими его стенками
- •3.10 Излучение факела пламени и карбюрация
- •3.11 Лучистый теплообмен одновременно с конвекцией
- •Перечень ссылок
Стационарная теплопроводность цилиндрической стенки
Однородная стенка
Рис.10 Однородная цилиндрическая стенка
(25а)
Разделив переменные, получим
(25в)
Интегрирование последнего уравнения
дает:
(25с)
Подставляя значение переменных на границах стенки, а именно при r = r1 и t = t1 при r = r2 и t = t2, получаем следующие два равенства:
(25д)
(25е)
Вычитая из первого равенства (д) второе (е), находим:
откуда определяется неизвестная величина q :
(26)
Следовательно, тепловой поток через стенку трубы, пря- мо пропорционально коэффициенту теплопроводности λ, длине l и температурному напору Δt = (t1 - t2) и обратно пропорционально натуральному логарифму отношения внешнего радиуса трубы r2 к внутреннему r1. Вместо отношения радиусов можно брать отношение диаметров.
Уравнение (26) является расчетной формулой теплопроводности цилиндрической стенки. Оно остается справедливым для случая, когда t1 < t2, т.е. когда тепловой поток направлен от наружной поверхности к внутренней. Если в уравнение (с) подставить значение постоянной С уравнения (д), а значение Q из уравнения (26), то получим уравнение температурной кривой:
,
оС
(27)
Оно представляет собой уравнение логарифмической кривой. Следовательно, внутри однородной цилиндрической стенки постоянном значении коэффициента теплопроводности температура изменяется по логарифмической кривой (рис.10). Дополнительные сведения. Если учесть зависимость коэффициента теплопроводности от температуры λ = λ0(1+ bt), то уравнение температурной кривой для цилиндрической стенки будет иметь следующий вид:
(28)
Количество тепла, проходящее в час через стенку трубы, может быть отнесено либо к 1 пог. м длины трубопровода, либо к единице внутренней, либо к единице внешней поверхности трубы. При этом расчетные формулы соответственно принимают следующий вид:
,
Вт/м (29)
,
Вт/м2
(30)
,
Вт/м2
(31)
Рис. 11 Многослойная
цилиндрическая стенка
q ·l= π d1· q1 = π d2· q2