- •1. Проблемы автоматизации программирования. Уровни автоматизации и их эффективность (общая характеристика).
- •2. Уровни автоматизации программирования (общая характеристика) и их использование при разработке программного обеспечения автоматизированных систем.
- •3. Автоматизация программирования. Машинный код.
- •4. Автоматизация программирования. Язык ассемблера.
- •5. Автоматизация программирования. Язык программирования.
- •6. Трансляция как способ реализация языка программирования. Виды трансляторов.
- •7. Интерпретация как способ реализации языка программирования. Типовой алгоритм работы интерпретатора.
- •8. Процессы трансляции и интерпретации. Сравнительная характеристика.
- •Основные различия
- •1. Транслятор
- •2. Интерпретатор
- •9. Процесс трансляции и его этапы. Типовая структура транслятора (общая характеристика).
- •10. Процесс трансляции. Лексический анализ исходной программы.
- •11. Процесс трансляции. Синтаксический анализ исходной программы.
- •12. Процесс трансляции. Семантический анализ исходной программы.
- •13. Процесс трансляции. Этап синтеза выполняемой программы.
- •14. Понятие уровня языка программирования. Способы реализации языков программирования (общая характеристика).
- •15. Объекты данных и их виды. Основные понятия. Время жизни и область видимости.
- •16. Атрибуты объектов данных. Понятие типа данных. Связывание объектов данных с атрибутами.
- •17. Понятие связывания. Время связывания и атрибуты объектов данных.
- •18. Структуры данных. Основные понятия и атрибуты.
- •19. Массив как механизм структуризации данных.
- •Недостатки
- •20. Строка как механизм структуризации данных.
- •21. Запись как механизм структуризации данных.
- •22. Сравнительный анализ основных языковых механизмов структуризации данных.
- •23. Множество как механизм структуризации данных, объявления множеств и операции с множествами.
- •24. Файловые структуры данных, особенности работы с файлами различного типа.
- •25. Модули как библиотеки ресурсов и особенности работы с ними.
- •26. Понятия вычислительной модели языка программирования. Императивная и объектно-ориентированная модели.
- •27. Базовые идеи структурного и объектно-ориентированного подхода к разработке программных продуктов.
- •28. Понятие визуального проектирования и визуальные компоненты системы программирования.
- •29. Особенности функционирования приложений в современных ос.
- •30. Событийная модель взаимодействия и событийно-управляемое программирование. Обработчик событий.
27. Базовые идеи структурного и объектно-ориентированного подхода к разработке программных продуктов.
Структурное программирование — методология разработки программного обеспечения, в основе которой лежит представление программы в виде иерархической структуры блоков.
Любая программа представляет собой структуру, построенную из трёх типов базовых конструкций:
последовательное исполнение — однократное выполнение операций в том порядке, в котором они записаны в тексте программы;
ветвление — однократное выполнение одной из двух или более операций, в зависимости от выполнения некоторого заданного условия;
цикл — многократное исполнение одной и той же операции до тех пор, пока выполняется некоторое заданное условие.
Теорема о структурном программировании
Любую схему алгоритма можно представить в виде композиции вложенных блоков begin и end, условных операторов if, then, else, циклов с предусловием (while) и может быть дополнительных логических переменных (флагов). Эта теорема была сформулирована итальянскими математиками К. Бомом и Дж. Якопини в 1966 году и говорит нам о том, как можно избежать использования оператора перехода goto.
ООП
Объекты – это крупнейшее достижение в современной технологии программирования. Смеем утверждать, что изобретение и практическая реализация объектов являются подвигом человеческого гения. Это не пустые слова: объекты позволили строить программу не из чудовищных по сложности процедур и функций, а из кирпичиков-объектов, заранее наделенных нужными свойствами. Самое приятное в этом то, что внутренняя сложность объектов скрыта от программиста, он просто пользуется готовым строительным материалом.
Рассмотрение данных в неразрывной связи с методами их обработки позволило вывести формулу объекта:
Объект = Данные + Операции
Каждый объект всегда принадлежит некоторому классу. Класс — это обобщенное (абстрактное) описание множества однотипных объектов. Объекты являются конкретными представителями своего класса, их принято называть экземплярами класса. Например, класс СОБАКИ — понятие абстрактное, а экземпляр этого класса МОЙ ПЕС БОБИК — понятие конкретное.
Весь мир ООП держится на трех китах: инкапсуляции, наследовании и полиморфизме.
Инкапсуляция – свойство системы, позволяющее объединить данные и операции в одно целое, и скрыть детали реализации от пользователя.
Полиморфизм. Он означает, что в производных классах вы можете изменять работу уже существующих в базовом классе методов. Или Полиморфизм — это свойство системы использовать объекты с одинаковым интерфейсом без информации о типе и внутренней структуре объекта. Например, вы можете породить новый класс кнопок с рельефной надписью, переопределив метод отрисовки кнопки. Новую кнопку можно «подсунуть» вместо стандартной в какую-нибудь подпрограмму, вызывающую отрисовку кнопки. При этом подпрограмма «думает», что работает со стандартной кнопкой, но на самом деле кнопка принадлежит производному классу и отображается в новом стиле.
Наследование - процесс порождения новых классов на основе других классов. Новые классы имеют как унаследованные признаки, так и, возможно, новые. Например, класс СОБАКИ унаследовал многие свойства своих предков — ВОЛКОВ. Класс, от которого производится наследование, называется базовым, родительским или суперклассом. Новый класс — потомком, наследником или производным классом.
