Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1Первый блок ответов.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
355.15 Кб
Скачать
  1. Системы поддержки принятия решений. Хранилища данных. Технологии olap и многомерные модели данных.

Увеличение объема информации, поступающей в органы управления и непосредственно к руководителям, усложнение решаемых задач, необходимость учета большого числа взаимосвязанных факторов и быстро меняющейся обстановки настоятельно требуют использовать вычислительную технику в процессе принятия решений. В связи с этим появился новый класс вычислительных систем – системы поддержки принятия решений (СППР).

Термин «система поддержки принятия решений» появился в начале семидесятых годов. За это время дано много определений СППР.

«Системы поддержки принятия решений являются человеко-машинными объектами, которые позволяют лицам, принимающим решения (ЛПР), использовать данные, знания, объективные и субъективные модели для анализа и решения слабоструктурированных и неструктурированных проблем». В этом определении подчеркивается предназначение СППР для решения слабоструктурированных и неструктурированных задач.

К слабоструктурированным относятся задачи, которые содержат как количественные, так и качественные переменные, причем качественные аспекты проблемы имеют тенден¬цию доминировать. Неструктурированные проблемы имеют лини» качественное описание.

СППР – компьютерная ИС, позволяющая ЛПР сочетать собственные субъективные предпочтения с компьютерным анализом ситуации при выработке управленческого решения.

Таким образом системы поддержки принятия решений выполняют следующие функции:

1. Помогают произвести опенку обстановки (ситуаций), осущест¬вить выбор критериев и оцепить их относительную важность.

2. Генерируют возможные решения (сценарии действий).

3. Осуществляют оценку сценариев (действий, решений) и выбирают лучший.

4. Обеспечивают постоянный обмен информацией об обстановке принимаемых решений и помогают согласовать групповые решения.

5. Моделируют принимаемые решения (в тех случаях, когда это возможно).

6. Осуществляют динамический компьютерный анализ возмож¬ных последствий принимаемых решений.

7. Производят сбор данных о результатах реализации принятых решений и осуществляют оценку результатов.

Хранилища данных. Принятие решений должно основываться на реальных данных об объекте управления. Такая информация обычно хранится в оперативных базах данных OLTP-систем. Но эти оперативные данные не подходят для целей анализа, так как для анализа и принятия стратегических решений в основном нужна агрегированная информация. Кроме того, для целей анализа необходимо иметь возможность быстро манипулировать информацией, представлять ее в различных аспектах, производить различные нерегламентированные запросы к ней, что затруднительно реализовать на оперативных данных по соображениям производительности и технологической сложности.

Решением данной проблемы является создание отдельного хранилища данных (ХД), содержащего агрегированную информацию в удобном виде. Целью построения хранилища данных является интеграция, актуализация и согласование оперативных данных из разнородных источников для формирования единого непротиворечивого взгляда на объект управления в целом. При этом в основе концепции хранилищ данных лежит признание необходимости разделения наборов данных,, используемых для транзакционной обработки, и наборов данных, применяемых в системах поддержки принятия решений. Такое разделение возможно путем интеграции разъединенных в различных системах обработки данных (СОД) и внешних источниках детализированных данных в едином хранилище, их согласования и, возможно, агрегации.

Концепция хранилищ данных предполагает не просто единый логический взгляд на данные организации, а действительную реализацию единого интегрированного источника данных. Хранилище данных функционирует по следующему сценарию. По заданному регламенту в него собираются данные из различных источников - баз данных систем оперативной обработки. В хранилище поддерживается хронология: наравне с текущими хранятся исторические данные с указанием времени, к которому они относятся. В результате необходимые доступные данные об объекте управления собираются в одном месте, приводятся к единому формату, согласовываются и, в ряде случаев, агрегируются до минимально требуемого уровня обобщения.

Альтернативой хранилищу может являться виртуальная БД, объединяющая первичные источники, однако у нее есть существенные недостатки: таблиц размерность таблиц, высокие требования к

производительности процессоров и телекоммуникационного оборудования.

На основе хранилища данных возможно составление отчетности для руководства, анализ данных с помощью OLAP-технологий и интеллектуальный анализ данных (Data Mining).

OLAP-технологии. В основе концепции оперативной аналитической обработки (OLAP) лежит многомерное представление данных. Термин OLAP ввел Е. F. Codd в 1993 году. В своей статье он рассмотрел недостатки реляционной модели, в первую очередь невозможность «объединять, просматривать и анализировать данные с точки зрения множественности измерений, то есть самым понятным для корпоративных аналитиков способом», и определил общие требования к системам OLAP, расширяющим функциональность реляционных СУБД и включающим многомерный анализ как одну из своих характеристик.

По Кодду, многомерное концептуальное представление является наиболее естественным взглядом управляющего персонала на объект управления. Оно представляет собой множественную перспективу, состоящую из нескольких независимых измерений, вдоль которых могут быть проанализированы определенные совокупности данных. Одновременный анализ по нескольким измерениям данных определяется как многомерный анализ.

Интеллектуальный анализ данных. Наибольший интерес в С ПНР представляет интеллектуальный анализ данных, так как он позволяет провести наиболее полный и глубокий анализ проблемы, дает возможность обнаружить скрытые взаимосвязи, принять наиболее обоснованное решение.

Современный уровень развития аппаратных и программных средств с некоторых пор сделал возможным повсеместное ведение баз данных оперативной информации на разных уровнях управления. В процессе своей деятельности промышленные предприятия, корпорации накопили большие объемы данных. Они хранят в себе большие потенциальные возможности по извлечению полезной аналитической информации, на основе которой можно выявлять скрытые тенденции, строить стратегию развития, находить новые решения.

Интеллектуальный анализ данных (Data Mining) — это процесс поддержки принятия решений, основанный на поиске в данных скрытых закономерностей (шаблонов информации). При этом накопленные сведения автоматически обобщаются до информации, которая может быть охарактеризована как знания.

В общем случае процесс НАД состоит из трёх стадий:

1) выявление закономерностей;

2) использование выявленных закономерностей для предсказания неизвестных значений (прогностическое моделирование);

3) анализ исключений, предназначенный для выявления и толкования аномалий в найденных закономерностях.

Новыми компьютерными технологиями, образующими ИАД являются экспертные и интеллектуальные системы, методы искусственного интеллекта, базы знаний, базы данных, компьютерное моделирование, нейронные сети, нечеткие системы. Современные технологии ИАД позволяют создавать новое знание, выявляя скрытые закономерности, прогнозируя будущее состояние систем. Основным методом моделирования является метод имитационного моделирования. Это дает возможность на модели проиграть различные стратегии развития, сравнить альтернативы, учесть влияние многих факторов, в том числе с элементами неопределенности.

Перспективно применение в СППР комбинированных методов принятия решений в сочетании с методами искусственного интеллекта и компьютерным моделированием, различные имитационно-оптимизационные процедуры, принятие решений в сочетании с экспертными процедурами.