
- •Часть 2
- •Глава 10. Процессы защиты гидросферы 4
- •Глава 11. Физико-химические методы очистки сточных вод 51
- •Глава 12. Химические методы очистки сточных вод 185
- •Глава 13. Термические методы очистки сточных вод 211
- •Глава 10. Процессы защиты гидросферы
- •10.1. Классификация методов очистки сточных вод.
- •10.2. Удаление взвешенных частиц из сточных вод
- •10.2.1 Процеживание.
- •10.2.2. Процесс отстаивания и применяемое оборудование.
- •Пример расчета песколовки.
- •10. 2. 3 Удаление всплывающих примесей
- •10.3. Фильтрование
- •10.3.1Фильтрование через фильтрующие перегородки.
- •10.3.2 Фильтры с зернистой перегородкой.
- •10.4. Удаление взвешенных частиц под действием центробежных сил и отжиманием
- •10.4.1. Гидроциклоны
- •10.4.2 Центрифуги.
- •10.4.3 Червячные отжимные аппараты.
- •Контрольные вопросы
- •Глава 11. Физико-химические методы очистки cточных вод.
- •11.1.1. Коагуляция
- •11.1.2. Флокуляция.
- •11.1.3. Флотация
- •11.2. Адсорбция
- •11.2.1 Конструкция адсорберов.
- •11.2.2.Регенерация адсорбента.
- •Пример решения задач на тему адсорбция.
- •11.3. Ионный обмен
- •11.3.1Сущность ионного обмена.
- •11.3.2Природные и синтетические иониты.
- •11.3.3 Ионообменное равновесие.
- •11.3.4 Регенерация ионитов.
- •Расчет ионообменной установки.
- •Расчет односекционной катионообменной колонны
- •11.4. Экстракция
- •Пример расчета распылительной калонны.
- •11.5. Обратный осмос и ультрафильтрация
- •Установка обратного осмоса
- •1. Степень концентрирования на ступени обратного осмоса
- •2. Выбор рабочей температуры и перепада давления через мембрану
- •3. Выбор мембраны
- •4. Приближенный расчет рабочей поверхности мембран
- •5. Выбор аппарата и определение его основных характеристик
- •6. Секционирование аппаратов в установке
- •7. Расчет наблюдаемой селективности мембран
- •Коэффициент массоотдачи
- •Поперечный поток
- •Потери соли с пермеатом
- •8. Уточненный расчет поверхности мембран
- •Рабочую поверхность мембран можно определить по формуле
- •11.6. Десорбция, дезодорация и дегазация
- •11.7. Электрохимические методы
- •11.7.1 Анодное окисление и катодное восстановление.
- •11.7.2 Электрокоагуляция.
- •11.7.3 Электрофлотация.
- •11.7.4 Электродиализ.
- •Контрольные вопросы
- •Глава 12. Химические методы очистки сточных вод
- •12.1Нейтрализация
- •12.2 0Кисление и восстановление
- •12.3 Удаление ионов тяжелых металлов
- •Контрольные вопросы
- •Глава 13. Термические методы очистки сточных вод
- •13.1. Концентрирование сточных вод
- •13.2 Испарительные установки.
- •13.3 Установки вымораживания.
- •13.4 Кристаллогидратные установки.
- •13.5. Выделение веществ из концентрированных растворов
- •13.5.1 Кристаллизация.
- •13.5.2 Сушка
- •13.6. Термоокислительные методы обезвреживания
- •Контрольные вопросы.
- •Литература
10.2.2. Процесс отстаивания и применяемое оборудование.
Отстаивание применяют для осаждения из сточных вод грубодисперсных примесей. Осаждение происходит под действием силы тяжести. Для проведения процесса используют песколовки, отстойники и осветлители. В осветлителях одновременно с отстаиванием происходит фильтрация сточных вод через слой взвешенных частиц.
Как правило, сточные воды содержат взвешенные частицы различной формы и размера. Такие воды представляют собой полидисперсные гетерогенные агрегативно-неустойчивые системы. В процессе осаждения размер, плотность и форма частиц, а также физические свойства системы изменяются. Кроме того, при слиянии различных по химическому составу сточных вод могут образовываться твердые вещества, в том числе и коагулянты. Эти явления также оказывают влияние на форму и размеры частиц. Все это усложняет установление действительных закономерностей процесса осаждения.
Свойства сточных вод, естественно, отличаются от свойств чистой воды. Они имеют более высокую плотность и вязкость. Вязкость
и плотность сточных вод, содержащих только взвешенные твердые частицы, равна:
(9)
(10)
Объемная доля жидкой фазы вычисляется по соотношению:
=Vж
/ (Vж+Vтв)
(11)
Здесь
— динамическая вязкость сточной воды
и чистой воды, Па
с;
с0—
объемная концентрация взвешенных
частиц, кг/м3;
р и рп—
плотность
соответственно чистой воды и твердых
частиц, кг/м3;
е — объемная
доля жидкой фазы; Vж
и Vтв
— объем жидкой и твердой фаз в
сточной воде, м3.
Основным
параметром, который используют при
расчете отстойников,
является скорость осаждения частиц
(гидравлическая крупность)
—
Для ламинарного, переходного и турбулентного режимов скорость свободного осаждения шарообразных частиц вычисляют по формуле:
(12)
где
Re0=
dp/
число Рейнольдса;
число
Архимеда;
d
— диаметр частицы.
Для
нешарообразных частиц в формулы
подставляют эквивалентный
диаметр частиц,
где
объем частицы).
При отстаивании сточных вод наблюдается стесненное осаждение, которое сопровождается столкновением частиц, трением между ними и изменением скоростей как больших, так и малых частиц. Скорость стесненного осаждения меньше скорости осаждения свободного вследствие возникновения восходящего потока жидкости и большей вязкости среды.
Скорость стесненного осаждения шарообразных частиц одинакового размера можно рассчитать при ламинарном режиме по формуле Стокса с поправочным коэффициентом, который учитывает влияние концентрации взвешенных частиц и реологические свойства системы:
(13)
Скорость осаждения полидисперсной системы непрерывно изменяется во времени. Вследствие агломерации частиц она может изменяться в несколько раз по сравнению с теоретической.
Способность к агломерации зависит от концентрации, формы,
М%
60
40
20
0
1 2 3
Рис. 10. Кинетика процесса осаждения
размера и плотности взвешенных частиц, а также от соотношения частиц различного диаметра и вязкости среды.
Коэффициент агломерации характеризуется отношением Ка =dф ./dn, где dф - фиктивный диаметр частицы, эквивалентный теоретической скорости ее осаждения. Для полидисперсных систем кинетику осаждения устанавливают опытным путем. Она характеризуется кривой, показанной на рис. 10.
При периодическом процессе осаждения взвешенные частицы в отстойнике распределяются неравномерно по высоте слоя сточных вод. Через какой-то промежуток времени после начала отстаивания в верхней части отстойника появляется осветленный слой жидкости. Чем ближе к дну отстойника, тем больше концентрация взвешенных частиц в сточной воде, а у самого дна образуется слой осадка. Во времени высота слоя осветленной жидкости, и высота слоя осадка возрастают за счет промежуточных слоев. Через определенный промежуток времени в отстойнике будут находиться только слой осветленной жидкости и слой осадка. В дальнейшем, если осадок не удалить, он будет уплотняться с уменьшением высоты. При непрерывном отстаивании наблюдаются те же зоны, но высота их не меняется в ходе процесса.
а) Песколовки. Их применяют для предварительного выделения минеральных и органических загрязнений (0,2-0,25 мм) из сточных вод. Горизонтальные песколовки представляют собой резервуары с треугольным или трапецеидальным поперечным сечением. Глубина песколовок 0,25-1 м. Скорость движения воды в них не превышает 0,3 м/с. Разновидностью горизонтальных песколовок являются песколовки с круговым движением воды в виде круглого резервуара конической формы с периферийным лотком для протекания сточной воды. Осадок собирается в коническом днище, откуда его направляют на переработку или в отвал. Применяются при расходах до 7000 м3/сут. Вертикальные песколовки имеют прямоугольную или круглую форму, в них сточные воды движутся с вертикальным восходящим потоком со скоростью 0,05 м/с.
Конструкцию песколовки выбирают в зависимости от количества сточных вод, концентрации взвешенных веществ. Наиболее часто используют горизонтальные песколовки.