
- •Лекция №1 по дисциплине “Теория распределение информации»
- •1. Информационные процессы и конфликты обслуживания
- •2. Основные определения теории систем массового обслуживания
- •3. Модели потока требований
- •1. Информационные процессы и конфликты обслуживания
- •2. Основные определения теории систем массового обслуживания
- •3. Модели потока требований
- •Лекция №2 по дисциплине “Теория распределение информации»
- •1.Математическое введение в теорию цепей Маркова
- •1.Математическое введение в теорию цепей Маркова
- •Лекция № 3 по дисциплине “Теория распределение информации»
- •1.Непрерывные цепи Маркова.
- •2.Анализ систем массового обслуживания с марковскими потоками требований. Система м/m/1. Анализ
- •1.Непрерывные цепи Маркова.
- •Система м/m/1. Анализ.
- •По дисциплине “Теория распределение информации»
- •1. Система с несколькими серверами: m/m/m
- •2.Система обслуживания с m серверами явными потерями: m/m/m/Loss
- •1. Система с несколькими серверами: m/m/m
- •2.Система обслуживания с m серверами явными потерями: m/m/m/Loss
- •Лекция №5 по дисциплине “Теория распределение информации»
- •1.Система типа m/m/m:m
- •2. Вероятность занятия серверов
- •1.Система типа m/m/m:m
- •2. Вероятность занятия серверов
- •Лекция №6 по дисциплине “Теория распределение информации»
- •Лекция №7 по дисциплине “Теория распределение информации»
- •Срс 1 по дисциплине “Теория распределение информации»
- •1 .Классификация потоков.
- •Нестационарный пуассоновский поток.
- •Примитивный поток.
- •Поток с ограниченным последействием.
- •Поток Эрланга
- •2.Поток освобождения серверов
- •Срс 2 по дисциплине “Теория распределение информации»
- •Классификация систем массового обслуживания.
- •Формула Литтла (Little).
- •Наименование темы: Стационарные вероятности рк для смо типа м/м/1.
- •Срс 4 по дисциплине “Теория распределение информации» Наименование темы: Cистема с конечным накопителем: m/m/1:n
- •Срс 5 по дисциплине “Теория распределение информации»
- •Срс 6 по дисциплине “Теория распределение информации»
- •Срс 7 по дисциплине “Теория распределение информации»
Лекция № 3 по дисциплине “Теория распределение информации»
Лекционные занятия: Модели систем массового обслуживания
1.Непрерывные цепи Маркова.
2.Анализ систем массового обслуживания с марковскими потоками требований. Система м/m/1. Анализ
1.Непрерывные цепи Маркова.
Случайный процесс X(t) с дискретным множеством значений образует непрерывную цепь Маркова, если
.
Будущие
состояния зависят от прошлого только
через текущее состояние. Для непрерывный
цепей Маркова основным также является
уравнение Чепмена –Колмогорова, для
однородной цепи имеющее вид:
.
Здесь матрица H(t) = [ pij(t)] - матрица вероятностей перехода из состояния i в состояние j в момент времени t , а матрица Q называется матрицей интенсивностей переходов. Ее элементы имеют следующий смысл: если в момент времени t система находилась в состоянии Ei , то вероятность перехода в течение промежутка времени (t,t+Δt) в произвольное состояние Ej задается величиной qij(t)Δt + o(Δt), а вероятность ухода из состояния Ei величиной -qiiΔt + o(Δt).
Таким образом, интенсивности переходов можно вычислять как соответствующие пределы при стремлении к нулю длительности временного интервала.
Наиболее важным для дальнейшего использования является класс непрерывных цепей Маркова называемых «процессами гибели - размножения»(Birth – death process). Для таких систем из состояния k возможны переходы только в состояния k, k-1 и k+1 в следующие моменты времени:
в момент t объем популяции был равен k и в течение времени (t,t+Δt) не произошло изменения состояния
в момент t объем популяции был равен k-1 и в течение времени (t,t+Δt) родился один член популяции
в момент времени t объем популяции был равен k+1 и в течение времени (t,t+Δt) погиб один член популяции.
Диаграмма переходов для дискретных цепей Маркова (Рис 3)
Рис.3 Диаграмма интенсивностей переходов для процесса размножения и гибели.
Овалам здесь соответствуют дискретные состояния, а стрелки определяют интенсивности потоков вероятности (а не вероятности!) переходов от одного состояния к другому.
Имеет место своеобразный «закон сохранения»:
Разность между суммой интенсивностей, с которой система попадает в состояние k и суммой интенсивностей, с которой система покидает это состояние должна равняться интенсивности изменения потока в это состояние (производной по времени).
Применение закона сохранения позволяет получать уравнения для любой подсистемы Марковской цепи типа процесса «гибели-размножения». Особенно эффективным оказывается построение решений в стационарном, установившемся режиме, когда можно полагать что вероятности в произвольный, достаточно отдаленный момент времени, остаются постоянными.
Система м/m/1. Анализ.
Это система с пуассоновским входным потоком заявок, экспоненциальным законом распределения времени обслуживания и одним сервером.
На рис. 1. приведена простейшая схема такой системы. Она содержит буфер, который может хранить очередь бесконечной длины, состояние которой может быть отождествлено с числом заявок, содержащихся в очереди в каждый момент времени.
Рис. 1. СМО типа М/М/1.
Поскольку входной процесс ординарный, то в каждый момент времени к очереди может добавиться только одна заявка, поскольку сервер один, то в каждый момент времени может быть обслужена, то есть уйти из очереди только одна заявка. Таким образом, рассматриваемая СМО относится к процессу класса «гибели-размножения». Для анализа необходимо конкретизировать параметры системы. Распределение вероятностей входного потока и времени обслуживания позволяет полагать интенсивности вероятностей в модели постоянными.
Здесь – среднее время обслуживания в сервере.
На рис 2 приведена диаграмма интенсивностей переходов для рассматриваемой системы.
Рис. 2 Диаграмма интенсивности переходов для СМО типа М/М/1.
Полученное ранее общее решение позволяет сразу записать вероятность того, что в стационарном состоянии в очереди будет находиться k заявок
Найдем начальное значение вероятности, учитывая сходимость соответствующего ряда
.
Окончательно получаем формулу для вероятности длины очереди
.
Лекция №4