
- •Передмова
- •1. Хімічний склад живих організмів.
- •1.1. Особливості хімічного складу живих організмів
- •1. 2. Макроелементи в організмі людини, їх значення
- •1. 3. Мікроелементи в організмі людини, їх значення
- •1. 4. Хімічні елементи в продуктах харчування
- •2 . Нуклеїнові кислоти днк та рнк. Ліпіди.
- •2.1. Молекула днк
- •2.2. Молекула рнк
- •2.3. Функції нуклеїнових кислот
- •2.4. Класифікація та функції ліпідів.
- •3. Каталіз. Ферментативний каталіз.
- •4. Особливості ферментів мікроорганізмів, їх функції
- •4.1. Ферментів мікроорганізмів.
- •4.2. Види ферментів та їх роль
- •4. 3. Використання ферментів мікроорганізмів людиною
- •5. Гормони – регулятори обміну речовин в організмі.
- •6. Обмін ліпідів. Травлення, всмоктування та перетворення в тканинах.
- •6. 2. Окислення гліцерину
- •6. 3. Окислення вищих жирних кислот
- •6. 4. Обмін кетонових тіл
- •6. 5. Біосинтез гліцерину
- •6. 6. Біосинтез вищих жирних кислот
- •6.7. Біосинтез тригліцеридів
- •Утворення фосфатидної кислоти:
- •Ферментативне розщеплення фосфатидної кислоти за допомогою фосфо-ліпази с:
- •Обмін білків. Значення у харчуванні. Травлення. Біосинтез білку.
- •7. 1. Функції білка
- •7. 2. Умови і етапи біосинтезу білка
- •7.3. Природа генетичної коду
- •7.4. Етапи синтезу білка
- •Активування амінокислот
- •8. Взаємозв,язок обміну білків, жирів і вуглеводів.
- •9. Водний і мінеральний обмін.
- •9.1. Значення води і мінеральних солей
- •9.2. Водний обмін.
- •9.3. Значення води в процесі росту і розвитку дитини.
- •10. Біохімія зерна і хліба.
- •10. 1. Хімічний склад зерна
- •10.2. Крупи
- •10.3. Класифікація та асортимент крупів
- •10.4. Борошно
- •10.5. Показники якості та дефекти крупів і борошна
- •10.6. Дефекти крупів і борошна.
- •11. Біохімія кави та чаю.
- •11.1. Із чого «зроблений» кава?
- •11.2. Хімічний склад та харчова цінність кави
- •11.3. Кофеїн кави
- •11.4. Фармакологічні властивості
- •11. 5. Передозування
- •11.6. Чай китайський
- •Література
7.3. Природа генетичної коду
Генетична інформація, закодована в первинній структурі ДНК, переводиться ще в ядрі в нуклеотидную послідовність мРНК. Проте питання про те, яким чином ця інформація передається на білкову молекулу, довго не був з'ясований. Перші вказівки на існування прямої функціональної залежності між структурою гена і його продуктом — білком можна знайти у Ч. Яновського, який в серії витончених дослідів із застосуванням методів генетичного картирування і сективірування показав, що порядок змін в структурі гена мутанта триптофанситази у E. coli в точності відповідає порядку відповідних змін в амінокислотній послідовності молекули білка-ферменту.
Раніше було відомо, що молекули мРНК не володіють спорідненістю до амінокислот, тому для перекладу нуклеотидної послідовності мРНК на амінокислотну послідовність білків потрібний якийсь посередник, названий адаптором. Молекула адаптора повинна бути у свою чергу наділена здатністю дізнаватися нуклеотидну послідовність специфічної мРНК і відповідну амінокислоту. Володіючи подібною адапторною молекулою клітка може включати кожну амінокислоту у відповідне місце поліпептидного ланцюга, в строгій відповідності з нуклеотидною послідовністю мРНК. Залишається, таким чином, непорушним положення, що самі по собі функціональні групи амінокислот не володіють здатністю вступати в контакт з матрицею інформаційної мРНК.
Було показано, що в нуклеотидной послідовності молекули мРНК є кодові слова для кожної амінокислоти — генетичний код. Проблема, проте, зводиться до того, з чого складається цей таємничий код? Найімовірніше, він полягає в певній послідовності розташування нуклеотидів в молекулі ДНК . Питання про те, які нуклеотиди відповідальні за включення певної амінокислоти в білкову молекулу і яку кількість нуклеотидів визначає це включення, залишався невирішеним до 1961 р. Теоретичний розбір показав, що код не може складатися з одного нуклеотиду, оскільки в цьому випадку тільки 4 амінокислоти можуть кодуватися. Але код не може бути і дуплетним, тобто комбінація з двох нуклеотидів з чотирьохбуквеного алфавіту не може охоплювати всіх амінокислот, оскільки подібних комбінацій теоретично можливо тільки 16 (42=16), а до складу білка входять 20 амінокислот. Для всіх амінокислот білкової молекули було б досить узяти триплетний код, коли число можливих комбінацій складе 64 (43=64).
З приведених вище за дані М. Ніренберга стає очевидним, що Полі-у, тобто РНК, що гіпотетично вміщує залишки тільки одного уриділового нуклеотиду, сприяє синтезу білка, побудованого із залишків однієї амінокислоти — фенілаланину. На цій підставі був зроблений вивід, що кодоном для включення фенілаланину в білкову молекулу може служити триплет, що складається з 3 уриділових нуклеотидів, — УУУ. Незабаром було показано, що синтетична матрична поліцитиділова кислота (поли - Ц) кодує утворення поліпролину, а матрична поліаденілова кислота (поли-А) — полілізина. Відповідні триплети — ЦЦЦ і ААА — дійсно виявилися триплетами (названими кодонами) для кодування проліну лізину.
М. Ніренберг, С. Очоа и Х. Корану, користуючись штучно синтезованими мРНК, представили докази не тільки складу, але і послідовності триплетів всіх кодонів, відповідальних за включення кожній з 20 амінокислот білкової молекули.
Генетичний код для амінокислот є виродженим. Це означає, що переважне число амінокислот кодується з декількома кодонами, за винятком метіоніну і триптофану, решта амінокислот має більш за один специфічний кодон. Виродженність коди виявляється неоднаковою для різних амінокислот. Так, якщо для серину, аргініну і лейцину є по 6 кодових слів, то ряд інших амінокислот, зокрема глутамінова кислота, гістидин і Тирозин, мають по два кодони, а триптофан — тільки 1. Слід зазначити, що виродженність найчастіше стосується тільки третього нуклеотиду, тоді як для багатьох амінокислот перші два нуклеотиди є загальними. Цілком допустимо тому припущення, що послідовність перших два нуклеотидов визначає в основному специфічність кожного кодону, тоді як третій нуклеотид менш существен. Останнім часом з'явилися докази гіпотези два з трьох, що означає, що код білкового синтезу, можливо, є квазі- або псевдодуплетним. Є докази, що вырожденность генетичної коди має безперечний біологічний сенс, забезпечуючи організму ряд переваг. Зокрема, вона сприяє "вдосконаленню" генома, оскільки в процесі мутації можуть наступати різні амінокислотні заміни, найбільш цінні з яких відбираються в процесі еволюції.
Іншою відмітною особливістю генетичної коди є його безперервність, відсутність розділових знаків, тобто сигналів, вказуючих на кінець одного кодону і почало іншого. Іншими словами, код є лінійним, що не уривається: АЦГУЦГАЦЦ. Це властивість генетичної коди забезпечує синтез надзвичайно впорядкованої послідовності молекули білків. У всіх інших випадках послідовність нуклеотидов в кодонах порушуватиметься і приводитиме до синтезу "безглуздого" поліпептидного ланцюга із зміненою структурою. Слід вказати на ще одну особливість коди — його універсальність для всіх живих організмів: від Е. соli до людини.
Серед 64 мислимих кодонів сенс має 61, тобто кодує певну амінокислоту. В той же час три кодони, а саме УАГ, УАА, УГА є безглуздими, нонсенсом-кодоном, оскільки вони не кодують жодної з 20 амінокислот. Проте ці кодони не позбавлені сенсу, оскільки виконують важливу функцію в синтезі білка в рибосомах (функцію закінчення, термінації синтезу).
При дослідженні генетичної коди в дослідах in vivo були також отримані докази універсальності коди. Проте останнім часом з'ясовані деякі відмінності коди в мітохондріях еукаріот тварин, включаючи людину, що відрізняється чотирма кодонами від генетичної коди цитоплазми, навіть тих же кліток. Зокрема, АУГ, що є зазвичай ініціаторним кодоном, кодує також метіонін в ланцюзі, і УГА, що є нонсенсом-кодоном, кодує в мітохондріях триптофан. Крім того, кодони АГА і АГГ є для мітохондрій що швидше термінують, а не що кодують аргінін. Як результат цих змін, для прочитування генетичної коди мітохондрій потрібний менше за разных тРНК, тоді як система цитоплазми трансляції володіє повним набором тРНК.