
- •16Объективные общие и специфические предпосылки возникновения и развития представлений о природе в архаическом и раннетрадиционном обществе.
- •18Мифологическая картина мира.
- •22Особенности механистической картины, ее значение для развития науки и историческое место.
- •28Структурные уровни и виды материи.
- •30Пространство и время, пространственно-временной континуум.
- •31Корпускулярная и континуальная концепции описания природы.
- •32Понятие космогонической и космологической концепций.
- •33Концепции и взгляды на структуру Метагалактики.
- •35Эволюция звезд (карлики, нейтронные звезды, черные дыры).
- •37Концепции происхождения и эволюции Солнечной системы, Земли.
- •42Динамические и статистические закономерности в природе.
- •45Принципы относительности, дополнительности, соответствия.
- •46Принципы универсального эволюционизма.
- •48Понятие преджизни и жизни.
- •49Концепции возникновения и развития жизни на Земле.
- •51Генетика и воспроизводство жизни.
- •52Синтетическая теория эволюции и коэволюции.
- •54Концепции происхождения человека.
32Понятие космогонической и космологической концепций.
Проблема происхождения планет – очень сложная и далеко еще не решенная проблема, во многом зависящая от развития не только астрономии, но и других естественных наук (прежде всего наук о Земле). Наиболее важные выводы планетной космогонии сводятся к следующему:а) планеты сформировались в результате объединения твердых (холодных) тел и частиц, входивших в состав туманности, которая когда –то окружала Солнце. б) формирование планет происходило под воздействием различных физических процессов. в) спутники планет (а значит, и наша Луна) возникли, по-видимому, из роя частиц, окружающих планеты, то есть тоже из вещества протопланетной туманности. Основная идея современной планетной космогонии – это то, что планеты и их спутники образовались из холодных твердых тел и частиц.Космологические модели вселенной Современная космология - это астрофизическая теория структуры и динамики изменения Метагалактики, включающая в себя и определенное понимание свойств всей Вселенной. Космология основывается на астрономических наблюдениях Галактики и других звездных систем, общей теории относительности, физике микропроцессов и высоких плотностей энергии, релятивистской термодинамике и ряде других новейших физических теорий. Общепризнанным итогом античной космологии стала геоцентрическая концепция Птолемея, просуществовавшая в течение всего Средневековья. Основателем научной космологии считается Николай Коперник, который поместил Солнце в центр Вселенной и низвел Землю до положения рядовой планеты Солнечной системы.
33Концепции и взгляды на структуру Метагалактики.
Метагалактика — это доступная наблюдениям часть Вселенной. Метагалактика представляет собой упорядоченную систему галактик. Метагалактика постоянно расширяется, т.е. наша Вселенная нестационарна. Метагалактика имеет сетчатую (ячеистую) структуру, т.е. галактики распределены в ней не равномерно, а вдоль определенных линий — как бы по границам ячеек сетки. Такое строение свидетельствует, что в небольших объемах Метагалактика неоднородна. Открытие расширения Метагалактики свидетельствует о том, что в прошлом Метагалактика была не такой как сейчас и иной станет в будущем, т.е. Метагалактика эволюционирует. По красному смещению определены скорости удаления галактик. У многих галактик они очень велики, соизмеримы со скоростью света. Самым большими скоростями (более 250 000 км/с) обладают некоторые квазары, которые считаются самыми удаленными от нас объектами Метагалактики. Мы живем в расширяющейся Метагалактике. Расширение Метагалактики проявляется только на уровне скоплений и сверхскоплений галактик. Метагалактика имеет одну особенность: не существует центра, от которого разбегаются галактики. Удалось вычислить промежуток времени с начала расширения Метагалактики. Он равен 20-13 млрд. лет. Расширение Метагалактики является самым грандиозным из известных в настоящее время явлений природы
35Эволюция звезд (карлики, нейтронные звезды, черные дыры).
Звезды находятся в плазменном состоянии. Они разогреты до миллионов градусов. Внутри звезд происходит термоядерная реакция. Зыезды-это фабрики элементов. Эволюция звезд. Звезда начинает свою жизнь как холодное разреженное облако межзвездного газа, сжимающееся под действием собственного тяготения. При сжатии энергия гравитации переходит в тепло, и температура газовой глобулы возрастает. В прошлом столетии вообще считали, что энергии, выделяющейся при сжатии звезды, достаточно для поддержания ее светимости, но геологические данные пришли в противоречие с этой гипотезой: возраст Земли оказался значительно больше того времени, в течение которого Солнце могло бы поддерживать свое излучение за счет сжатия (ок. 30 млн. лет). Сжатие звезды приводит к повышению температуры в ее ядре; когда она достигает нескольких миллионов градусов, начинаются термоядерные реакции и сжатие прекращается. В таком состоянии звезда пребывает большую часть своей жизни, находясь на главной последовательности диаграммы Герцшпрунга – Ресселла, пока не закончатся запасы топлива в ее ядре. Когда в центре звезды весь водород превратится в гелий, термоядерное горение водорода продолжается на периферии гелиевого ядра. В этот период структура звезды начинает заметно меняться. Ее светимость растет, внешние слои расширяются, а температура поверхности снижается – звезда становится красным гигантом. На ветви гигантов звезда проводит значительно меньше времени, чем на главной последовательности. Когда масса ее изотермического гелиевого ядра становится значительной, оно не выдерживает собственного веса и начинает сжиматься; возрастающая при этом температура стимулирует термоядерное превращение гелия в более тяжелые элементы. Белые карлики и нейтронные звезды. Вскоре после гелиевой вспышки «загораются» углерод и кислород; каждое из этих событий вызывает сильную перестройку звезды и ее быстрое перемещение по диаграмме Герцшпрунга – Рессела. Размер атмосферы звезды увеличивается еще больше, и она начинает интенсивно терять газ в виде разлетающихся потоков звездного ветра. Судьба центральной части звезды полностью зависит от ее исходной массы: ядро звезды может закончить свою эволюцию как белый карлик, нейтронная звезда (пульсар) или черная дыра. Подавляющее большинство звезд, и Солнце в том числе, заканчивают эволюцию, сжимаясь до тех пор, пока давление вырожденных электронов не уравновесит гравитацию. В этом состоянии, когда размер звезды уменьшается в сотню раз, а плотность становится в миллион раз выше плотности воды, звезду называют белым карликом. Она лишена источников энергии и, постепенно остывая, становится темной и невидимой. У звезд более массивных, чем Солнце, давление вырожденных электронов не может сдержать сжатие ядра, и оно продолжается до тех пор, пока большинство частиц не превратится в нейтроны, упакованные так плотно, что размер звезды измеряется километрами, а плотность в 100 млн. раз превышает плотность воды. Такой объект называют нейтронной звездой; его равновесие поддерживается давлением вырожденного нейтронного вещества. Черные дыры. У звезд более массивных, чем предшественники нейтронных звезд, ядра испытывают полный гравитационной коллапс.