
2 Билет
Акустическая (как правило ультразвуковая) коагуляция - процесс сближения и укрупнения взвешенных в газе или жидкости мелких твердых частиц, жидких капелек и газовых пузырьков под воздействием акустических колебаний. При коагуляции уменьшается дисперсность сред, оцениваемая по общей поверхности частиц в единице объема, и число частиц дисперсной системы. В результате коагуляции происходит осаждение взвешенных частиц в газе или жидкости твердых частиц и капелек.В аэрозолях мелкие частицы подвергаются воздействию гравитационного поля, участвуют в броуновском движении, увлекаются конвективными и гидродинамическими течениями. При наложении ультразвукового поля возникают дополнительные силы, способствующие коагуляции: взвешенная в газе или жидкости частица вовлекается в колебательное движение, на нее действует давление звукового излучения, вызывая ее дрейф, она увлекается акустическими течениями и т.д.Кинетика процесса коагуляции аэрозолей характеризуется формулой:
n=n0ekr
где n - концентрация частиц за время облучения;
n0 - концентрация частиц в начальный момент облучения (t = 0);
k - коэффициент коагуляции, зависящий от свойств аэрозоля и параметров ультразвукового поля.
3 Билет
А) Классификация ультразвуковых преобразователей
1. Аэродинамические преобразователи обеспечивают преобразование энергии потока газа в ультразвуковые колебания газовой среды.
По характеру преобразования энергии потока газа аэродинамические преобразователи делятся на:
а) статические сирены или газоструйные излучатели; б) динамические сирены
Газоструйные излучатели - это генераторы звуковых и ультразвуковых колебаний, не имеющие движущихся частей, источником энергии служит кинетическая энергия движения газовой струи. Динамические сирены представляют собой газоструйные излучатели с возможностью периодического открывания и закрывания отверстий резонаторов за счет вращения роторного устройства.
Аэродинамические преобразователи обеспечивают возбуждение УЗ колебаний в газовых средах и могут быть использованы для ускорения процессов в газовых средах. Рабочие частоты аэродинамических преобразователей не превышают 20… 50 кГц
Гидродинамические излучатели обеспечивают преобразование энергии струи жидкости в энергию ультразвуковых колебаний. Их действие основано на генерировании ультразвуковых колебаний в жидкой среде, при взаимодействии вытекающей из сопла струи с препятствием определённой формы и размеров, либо при принудительном периодическом прерывании струи. Действие газоструйных излучателей основано на вихреобразовании, резонансе, автоколебаниях и других физических эффектах [7].
В зависимости от характера преобразования энергии гидродинамические излучатели делятся на:
а) пластинчатые излучатели
б) клапанные
в) вихревые
г) пульсационные
д) роторные (Рисунок 2.2, б)
Рабочие частоты гидродинамических излучателей не превышают 20 кГц.
Электромеханические преобразователи – низкочастотные вибраторы, обеспечивающие воздействие с большой амплитудой на объекты большой массы.
Электромеханические преобразователи делятся на:
1) электромагнитные, с подвижным железным якорем, основанные на преобразовании энергии электрического тока в магнитном поле (Рисунок 2.3);
2) электродинамические излучатели – основанные на преобразовании энергии электрического тока в магнитном поле;
3) механические вибраторы – основаны на преобразование механической энергии одного вида (энергии вращения кривошипно-шатунных механизмов) в продольные колебания.
Акустические волны в электромеханическом преобразователе создаются в результате колебаний механической системы в жидкости.
Основным недостатком преобразователей такого типа является невозможность работы на частотах выше 1 кГц, так как при повышении частоты резко возрастают электрические потери на вихревые токи и гистерезис.
Импульсные источники.
Действие таких источников основано на преобразовании различных видов энергии для создания коротких широкополосных сигналов. Различаются:
1) взрывные – обеспечивающие преобразование энергии взрыва в звуковые колебания;
2) ударные – преобразующие энергию механического удара;
3) тепловые – основанные на тепловом ударе;
4) электроразрядные – преобразующие энергию электрического разряда в жидкости;
5) импульсные электродинамические.
5. Магнитострикционные преобразователи - обеспечивают преобразование энергии магнитного поля в механические колебания УЗ частоты.
Используются для возбуждения колебаний в жидких и твердых телах
рабочие частоты импульсных источников до 100 кГц. Основным недостатком является необходимость водяного охлаждения, поскольку магнитострикционные материалы характеризуются низкой температурой Кюри, температурой потери магнито-стрикционных свойств материалом [4].
6. Пьезоэлектрические преобразователи
обеспечивают преобразование энергии электрического поля в механические колебания УЗ частоты. Используются для формирования УЗК в жидких, твердых и газообразных ве-ществах. Рабочие частоты от 20 кГц до 1000 кГц.
Этот вид преобразователей получил наибольшее распространение, практически вытеснив из практики все остальные преобразователи. Поэтому основное внимание при рассмотрении вопроса об источниках ультразвуковых колебаний мы посвятим преобразователям, основанным на использовании пьезоэлектрического эффекта
Б) Ультразвуковая сушка - удаление влаги из материала под влиянием интенсивных акустических колебаний. В значительной мере эффективность ультразвуковой сушки связана с ускорением процессов теплообмена в ультразвуковом поле. При этом высушиваемый материал подвергается со стороны газовой среды воздействию ультразвукового поля с уровнем интенсивности і 145 дБ, создаваемого обычно газоструйными излучателями.
Механизм воздействия упругих волн на влагу зависит от агрегатного состояния материала, его влажности, размера частиц высушиваемого материала, типа связи влаги с ним и характеристик акустического поля.
При очень высокой влажности (влагосодержании) капиллярно-пористых материалов (200-500%) имеет место чисто механическое удаление влаги, которое сводится к своеобразному "вытряхиванию" жидкости из капилляров. Это происходит вследствие дробления капель при возникновении у поверхности материала сильных акустических потоков и появления капиллярных волн. В известной степени эти процессы аналогичны процессам, протекающим при ультразвуковом распылении, с той разницей, что в последнем случае энергия ультразвуковых колебаний подводится со стороны жидкости. Механическое воздействие зависит от интенсивности акустической волны, сильно возрастая при увеличении ее уровня выше 165 дБ и ослабевает с появлением частоты; наиболее сильно оно проявляется в пучностях скорости стоячей волны, где акустические потоки максимальны.
При умеренной влажности капиллярно-пористого материала (10-70%) воздействие акустических колебаний на процесс сушки проявляется с высокой и малой степенью интенсификации на первой и второй стадии, соответственно.