
- •Федеральное агентство связи
- •Сборник практических занятий
- •Практическое занятие №17
- •Вычислить неопределенные интегралы методом замены переменной
- •Вычислить неопределенные интегралы методом интегрирования по частям
- •Понятие неопределенного интеграла
- •Свойства неопределенного интеграла:
- •Методы интегрирования
- •1. Непосредственное интегрирование
- •2. Метод замены переменной (метод подстановки)
- •Практическое занятие №18
- •Интегрирование функций, содержащих квадратный трехчлен
- •Интегрирование рациональных дробей
- •Практическое занятие №19
- •Вычисление интегралов от иррациональных функций
- •Вычисление интеграла вида где n- натуральное число
- •Интегрирование некоторых тригонометрических функций
- •Практическое занятие №20
- •Свойства определенного интеграла
- •Замена переменной в определенном интеграле
- •Интегрирование по частям в определенном интеграле
- •Практическое занятие №21
- •Вариант 1
- •Вариант 2
- •Вариант 3
- •Вариант 4
- •Вариант 5
- •Вычисление площадей плоских фигур с помощью определенного интеграла
- •Вычисление объема тела вращения
- •Приложения определенного интеграла к решению физических задач
- •Задача о нахождении пути, пройденного точкой
- •Задача о нахождении работы переменной силы
- •Практическое занятие №22
- •Вычислить пределы функций
- •Найти области определения функций и построить их на плоскости
- •Понятие функции нескольких переменных
- •Практическое занятие №23
- •Найти частные производные от функций
- •Найти полные дифференциалы функций
- •Доказать равенства
- •Производные функций нескольких переменных
- •Полное приращение и полный дифференциал
- •Практическое занятие №24
- •Вычислить двойные интегралы по указанным прямоугольникам d:
- •Вычислить двойные интегралы по областям g, ограниченным линиями
- •Двойные интегралы
- •Вычисление двойного интеграла
- •Случай прямоугольной области
- •Случай криволинейной области
- •Практическое занятие №25
- •Геометрические приложения двойных интегралов
- •1) Вычисление площадей в декартовых координатах
- •Практическое занятие №26
- •Найти общее решение дифференциальных уравнений
- •Найти частные решения дифференциальных уравнений, удовлетворяющих начальным условиям:
- •Дифференциальные уравнения с разделяющимися переменными
- •Практическое занятие №27
- •Найти общее решение дифференциальных уравнений
- •Найти частные решения дифференциальных уравнений, удовлетворяющих начальным условиям:
- •Однородные уравнения
- •Линейные уравнения
- •Линейные однородные дифференциальные уравнения
- •Линейные неоднородные дифференциальные уравнения
- •Метод Бернулли
- •Практическое занятие №28
- •Найти общее решение уравнений
- •Найти частное решение уравнений
- •Дифференциальные уравнения высших порядков
- •Уравнения, допускающие понижение порядка
- •Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами
- •Практическое занятие №29
- •Доказать расходимость рядов, используя следствие из необходимого признака сходимости
- •Пользуясь признаком сравнения, исследовать на сходимость ряды
- •Исследовать ряды на сходимость, используя признак Даламбера
- •Исследовать ряды на сходимость, используя радикальный признак Коши
- •Исследовать на абсолютную и условную сходимость ряды
- •Понятие числового ряда
- •Примеры рядов
- •Свойства рядов
- •Необходимое условие сходимости ряда
- •Признак сравнения рядов с неотрицательными членами
- •Признак Даламбера
- •Признак Коши (радикальный признак)
- •Интегральный признак Коши
- •Знакочередующиеся ряды
- •Признак Лейбница
- •Абсолютная и условная сходимость рядов
- •Признаки Даламбера и Коши для знакопеременных рядов
- •Практическое занятие №30
- •Найти области сходимости степенных рядов
- •Разложить в ряд Маклорена функции
- •Степенные ряды
- •Разложение функций в степенные ряды
- •Формула Маклорена
- •Представление некоторых элементарных функций по формуле Маклорена
Пользуясь признаком сравнения, исследовать на сходимость ряды
-
1
2
Вариант 1
Вариант 2
Вариант 3
Вариант 4
Вариант 5
Исследовать ряды на сходимость, используя признак Даламбера
|
1 |
2 |
Вариант 1 |
|
|
Вариант 2 |
|
|
Вариант 3 |
|
|
Вариант 4 |
|
|
Вариант 5 |
|
|
Исследовать ряды на сходимость, используя радикальный признак Коши
|
1 |
2 |
Вариант 1 |
|
|
Вариант 2 |
|
|
Вариант 3 |
|
|
Вариант 4 |
|
|
Вариант 5 |
|
|
Исследовать на абсолютную и условную сходимость ряды
|
1 |
2 |
Вариант 1 |
|
|
Вариант 2 |
|
|
Вариант 3 |
|
|
Вариант 4 |
|
|
Вариант 5 |
|
|
Порядок проведения занятия:
Получить допуск к работе
Выполнить задания
Ответить на контрольные вопросы.
Содержание отчета:
Наименование, цель занятия, задание;
Выполненное задание;
Ответы на контрольные вопросы.
Контрольные вопросы для зачета:
Дать определение числового ряда, суммы ряда.
Какой ряд называется сходящимся? Расходящимся?
Сформулируйте необходимый признак сходимости ряда.
Записать признаки Даламбера, Коши.
Дать понятие абсолютной и условной сходимости рядов.
Какой ряд называется знакочередующимся?
Записать признак Лейбница.
ПРИЛОЖЕНИЕ
Понятие числового ряда
Числовым рядом называется выражение вида:
(1)
При этом
числа
называются членами ряда (1), аn
– общим членом ряда.
Примеры рядов
Из членов бесконечной геометрической прогрессии можно составить ряд:
-
ряд геометрической прогрессии
Если, например,
взять a = 1, q
=
,
то получим ряд:
Ряд
называется гармоническим рядом.
Сумма первых п членов ряда называется частичной суммой ряда. Таким образом, с рядом (1) связывается последовательность его частичных сумм
S1, S2, …,Sn, …, где S1 = а1, S2 = а1 + а2, … Sn = а1 + а2 + … + ап, …
Ряд
называется
сходящимся, если сходится
последовательность его частных сумм,
т.е. если существует предел
.
Число S называется суммой ряда.
Если последовательность частных сумм ряда расходится, т.е. не имеет предела, или имеет бесконечный предел, то ряд называется расходящимся.
Например, ряд геометрической прогрессии
сходится,
если
.
Если
,
то этот ряд сходится только при а =
0, а в остальных случаях расходится.
Гармонический ряд расходится.