
- •Федеральное агентство связи
- •Сборник практических занятий
- •Практическое занятие №17
- •Вычислить неопределенные интегралы методом замены переменной
- •Вычислить неопределенные интегралы методом интегрирования по частям
- •Понятие неопределенного интеграла
- •Свойства неопределенного интеграла:
- •Методы интегрирования
- •1. Непосредственное интегрирование
- •2. Метод замены переменной (метод подстановки)
- •Практическое занятие №18
- •Интегрирование функций, содержащих квадратный трехчлен
- •Интегрирование рациональных дробей
- •Практическое занятие №19
- •Вычисление интегралов от иррациональных функций
- •Вычисление интеграла вида где n- натуральное число
- •Интегрирование некоторых тригонометрических функций
- •Практическое занятие №20
- •Свойства определенного интеграла
- •Замена переменной в определенном интеграле
- •Интегрирование по частям в определенном интеграле
- •Практическое занятие №21
- •Вариант 1
- •Вариант 2
- •Вариант 3
- •Вариант 4
- •Вариант 5
- •Вычисление площадей плоских фигур с помощью определенного интеграла
- •Вычисление объема тела вращения
- •Приложения определенного интеграла к решению физических задач
- •Задача о нахождении пути, пройденного точкой
- •Задача о нахождении работы переменной силы
- •Практическое занятие №22
- •Вычислить пределы функций
- •Найти области определения функций и построить их на плоскости
- •Понятие функции нескольких переменных
- •Практическое занятие №23
- •Найти частные производные от функций
- •Найти полные дифференциалы функций
- •Доказать равенства
- •Производные функций нескольких переменных
- •Полное приращение и полный дифференциал
- •Практическое занятие №24
- •Вычислить двойные интегралы по указанным прямоугольникам d:
- •Вычислить двойные интегралы по областям g, ограниченным линиями
- •Двойные интегралы
- •Вычисление двойного интеграла
- •Случай прямоугольной области
- •Случай криволинейной области
- •Практическое занятие №25
- •Геометрические приложения двойных интегралов
- •1) Вычисление площадей в декартовых координатах
- •Практическое занятие №26
- •Найти общее решение дифференциальных уравнений
- •Найти частные решения дифференциальных уравнений, удовлетворяющих начальным условиям:
- •Дифференциальные уравнения с разделяющимися переменными
- •Практическое занятие №27
- •Найти общее решение дифференциальных уравнений
- •Найти частные решения дифференциальных уравнений, удовлетворяющих начальным условиям:
- •Однородные уравнения
- •Линейные уравнения
- •Линейные однородные дифференциальные уравнения
- •Линейные неоднородные дифференциальные уравнения
- •Метод Бернулли
- •Практическое занятие №28
- •Найти общее решение уравнений
- •Найти частное решение уравнений
- •Дифференциальные уравнения высших порядков
- •Уравнения, допускающие понижение порядка
- •Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами
- •Практическое занятие №29
- •Доказать расходимость рядов, используя следствие из необходимого признака сходимости
- •Пользуясь признаком сравнения, исследовать на сходимость ряды
- •Исследовать ряды на сходимость, используя признак Даламбера
- •Исследовать ряды на сходимость, используя радикальный признак Коши
- •Исследовать на абсолютную и условную сходимость ряды
- •Понятие числового ряда
- •Примеры рядов
- •Свойства рядов
- •Необходимое условие сходимости ряда
- •Признак сравнения рядов с неотрицательными членами
- •Признак Даламбера
- •Признак Коши (радикальный признак)
- •Интегральный признак Коши
- •Знакочередующиеся ряды
- •Признак Лейбница
- •Абсолютная и условная сходимость рядов
- •Признаки Даламбера и Коши для знакопеременных рядов
- •Практическое занятие №30
- •Найти области сходимости степенных рядов
- •Разложить в ряд Маклорена функции
- •Степенные ряды
- •Разложение функций в степенные ряды
- •Формула Маклорена
- •Представление некоторых элементарных функций по формуле Маклорена
Линейные однородные дифференциальные уравнения
Рассмотрим методы нахождения общего решения линейного однородного дифференциального уравнения первого порядка вида
.
Для этого типа дифференциальных уравнений разделение переменных не представляет сложностей.
;
Общее решение:
Линейные неоднородные дифференциальные уравнения
Для интегрирования линейных неоднородных уравнений (Q(x)0) применяются в основном два метода: метод Бернулли и метод Лагранжа.
Метод Бернулли
Суть метода
заключается в том, что искомая функция
представляется в виде произведения
двух функций
.
При этом
- дифференцирование по частям.
Подставляя в исходное уравнение, получаем:
Далее следует важное замечание – т.к. первоначальная функция была представлена нами в виде произведения, то каждый из сомножителей, входящих в это произведение, может быть произвольным, выбранным по нашему усмотрению.
Таким образом,
можно одну из составляющих произведение
функций выбрать так, что выражение
.
Таким образом, возможно получить функцию u, проинтегрировав, полученное соотношение как однородное дифференциальное уравнение по описанной выше схеме:
Для нахождения второй неизвестной функции v подставим поученное выражение для функции u в исходное уравнение с учетом того, что выражение, стоящее в скобках, равно нулю.
Интегрируя, можем найти функцию v:
;
;
Т.е. была получена вторая составляющая произведения , которое и определяет искомую функцию.
Подставляя полученные значения, получаем:
Окончательно получаем формулу:
,
где С2 - произвольный коэффициент.
Это соотношение может считаться решением неоднородного линейного дифференциального уравнения в общем виде по способу Бернулли.
Пример 1. Решить уравнение
Решение. Сначала приведем данное
уравнение к стандартному виду:
Применим
полученную выше формулу:
Пример 2. Решить
уравнение
Решение. Разделим уравнение на xy2:
Полагаем
.
Полагаем
Произведя обратную подстановку, получаем:
Практическое занятие №28
Наименование занятия: Решение дифференциальных уравнений высших порядков
Цель занятия: Научиться решать дифференциальные уравнения 2-го порядка
Подготовка к занятию: Повторить теоретический материал по теме «Обыкновенные дифференциальные уравнения».
Литература:
Григорьев В.П., Дубинский Ю.А. «Элементы высшей математики», 2008г.
Задание на занятие:
Найти общее решение уравнений
|
Вариант 1 |
Вариант 2 |
Вариант 3 |
1 |
|
|
|
2 |
|
|
|
3 |
|
|
|
4 |
|
|
|
5 |
|
|
|
6 |
|
|
|
7 |
|
|
|
|
Вариант 4 |
Вариант 5 |
1 |
|
|
2 |
|
|
3 |
|
|
4 |
|
|
5 |
|
|
6 |
|
|
7 |
|
|