
- •Введение
- •Архитектура микроконтроллера.
- •1.1 Структурная организация микроконтроллера i8051.
- •Назначение выводов микроконтроллера 8051.
- •1.2 Память
- •Память программ
- •Масочная память
- •Однократно программируемая память
- •Репрограммируемая память
- •Память с электрическим стиранием
- •Флэш-память
- •Память программ микроконтроллера 8051 (пзу).
- •Память данных
- •Статическая память
- •Память с электрическим стиранием
- •Память данных микроконтроллера 8051 (озу).
- •Специализированные ячейки флэш-памяти
- •Работа с внешней памятью микроконтроллера 8051.
- •1.3 Процессорное ядро
- •Регистр инструкций
- •Программный счетчик
- •Арифметико-логическое устройство
- •Арифметико-логическое устройство микроконтроллера 8051.
- •Регистры общего назначения
- •Регистр состояния
- •Регистр флагов (psw) микроконтроллера 8051.
- •Регистры ввода/вывода, специальные регистры.
- •1.4 Тактовый генератор
- •1.5 Система сброса
- •Источники сброса
- •1.6 Система прерываний
- •Алгоритм обработки прерываний
- •Система прерываний микроконтроллера 8051.
- •Регистр масок прерывания (ie).
- •Регистр приоритетов прерываний (ip).
- •Выполнение подпрограммы прерывания.
- •Вектора прерываний
- •1.7 Порты ввода/вывода организация ввода/вывода
- •Алгоритмы обмена данными
- •Асинхронный обмен
- •Симплексный обмен
- •Устройство портов.
- •Особенности электрических характеристик портов.
- •1.8 Таймеры-счетчики.
- •Таймеры-счетчики микроконтроллеров семейства 8051.
- •1.9 Последовательный порт микроконтроллера 8051.
- •Регистр управления/статуса приемопередатчика scon.
- •Функциональное назначение бит регистра управления/статуса приемопередатчика scon.
- •Скорость приема/передачи информации через последовательный порт.
- •Регистр управления мощностью pcon.
- •1.10 Режимы работы микроконтроллера 8051 с пониженным энергопотреблением.
- •Режим хх.
- •Режим внп.
- •1.11 Устройства ввода/вывода дискретных сигналов
- •1.12 Устройства ввода/вывода аналоговых сигналов
- •Интегрирующий преобразователь
- •Сигма-дельта преобразователь
- •1.13 Устройства обмена данными с другими микроконтроллерами
- •2. Программирование микроконтроллера
- •2.1 Система команд Мнемонические обозначения
- •Типы команд
- •Типы операндов
- •Группы команд.
- •Oбозначения, используемые при описании команд.
- •Команды пересылки данных микроконтроллера 8051.
- •Команды арифметических операций 8051.
- •Команды логических операций микроконтроллера 8051.
- •Команды операций над битами микроконтроллера 8051.
- •Команды передачи управления микроконтроллера 8051.
- •2.2 Язык ассемблера
- •Операнды
- •Операторы
- •Директивы ассемблера.
- •Командная строка
- •2.3 Особенности программирования микроконтроллеров общие особенности.
- •Типы инструментальных средств разработки и отладки программ для микроконтроллеров.
- •Внутрисхемные эмуляторы.
- •Классификация внутрисхемных эмуляторов.
- •Функциональные возможности внутрисхемных эмуляторов.
- •Достоинства и недостатки внутрисхемных эмуляторов.
- •Программные симуляторы.
- •Платы развития.
- •Отладочные мониторы.
- •Эмуляторы пзу.
- •Типичные функциональные модули средств разработки и отладки.
- •Отладчик.
- •Узел эмуляции микроконтроллера.
- •Эмуляционная память.
- •Подсистема точек останова.
- •Процессор точек останова.
- •Трассировщик.
- •Профилировщик.
- •Интегрированная среда разработки.
Командная строка
Командная строка вызова ассемблера выглядит следующим образом:
A51 файл [-l файл_листинг][-o объектный_файл]
Квадратные скобки показывают необязательные опции.
В результате компиляции будут получены файл листинга и файл объектного кода, если заданы соответствующие опции. Объектный файл представляет собой специальный шестнадцатеричный формат фирмы Intel.
2.3 Особенности программирования микроконтроллеров общие особенности.
Особенность написания и отладки программного обеспечения для однокристальных микро-ЭВМ (микроконтроллеров) состоит в том, что для этого, как правило, совершенно недостаточно иметь системы, состоящей только из программируемого микроконтроллера. Это связано с тем, что,
во-первых, как правило, ресурсов микроконтроллера (объема памяти, быстродействия) не достаточно для размещения и функционирования даже простейших сервисных программ (редактора текста, транслятора и отладочного монитора) необходимых для написания и отладки программы, если она даже будет написана на Ассемблере;
во вторых, некоторые архитектурные особенности (раздельные области памяти для хранения программ и данных, устройства защиты памяти программ) микроконтроллеров затрудняют или делают просто невозможным редактирование (написание, отладку) программ, по которым они работают.
Все это заставляет при разработке программ для микроконтроллеров использовать специальные средства - называемыми инструментальными средствами разработки и отладки.
В случае построения средств разработки и отладки на базе универсального компьютера становится возможным существенно облегчить разработку программ - использовать языки высокого уровня - C, Паскаль, построить дружественный интерфейс, использовать принципы объектного и визуального программирования и пр. Рассмотрим различные варианты построения инструментальных средств разработки и отладки.
Типы инструментальных средств разработки и отладки программ для микроконтроллеров.
К числу основных инструментальных средств отладки относятся:
Внутрисхемные эмуляторы;
Программные симуляторы;
Платы развития;
Мониторы отладки;
Эмуляторы ПЗУ.
Данный список не исчерпывает всех типов существующих инструментальных средств отладки. Кроме указанных, существуют и комбинированные устройства и наборы, которые позволяют компенсировать недостатки основных средств, взятых порознь.
Внутрисхемные эмуляторы.
Внутрисхемный эмулятор - программно аппаратное средство, способное замещать собой эмулируемый (моделируемый) процессор в реальной схеме. Внутрисхемный эмулятор - это наиболее мощное и универсальное отладочное средство.
По сути дела, «хороший» внутрисхемный эмулятор делает процесс функционирования отлаживаемого контроллера прозрачным, т.е. легко контролируемым, произвольно управляемым и модифицируемым по воле разработчика.
Обычно стыковка внутрисхемного эмулятора с отлаживаемой системой производится при помощи эмуляционного кабеля со специальной эмуляционной головкой. Эмуляционная головка вставляется вместо микроконтроллера в отлаживаемую систему. Если микроконтроллер невозможно удалить из отлаживаемой системы, то использование эмулятора возможно, только если этот микроконтроллер имеет отладочный режим, при котором все его выводы находятся в третьем состоянии. В этом случае для подключения эмулятора используют специальный адаптер-клипсу, который подключается непосредственно к выводам эмулируемого микроконтроллера.