
- •Глава первая общие понятия о релейной защите
- •1.1. Назначение релейной защиты
- •1.2. Повреждения в электроустановках
- •1.3. Векторные диаграммы токов и напряжений при кз
- •1.4. Ненормальные режимы
- •1.5. Основные требования, предъявляемые к устройствам релейной защиты
- •1.6. Структурные части и основные элементы рз
- •1.7. Виды устройств рз
- •1.8. Изображение схем рз на чертежах
- •1.9. Источники и схемы оперативного тока
- •Глава вторая принципы построения измерительных и логических органов релейной защиты
- •2.1. Общие принципы конструктивного исполнения реле
- •2.2. Электромеханические реле
- •2.3. Конструкции реле, выполняемых на электромагнитном принципе
- •2.4. Промежуточные реле (логические элементы)
- •2.5. Указательные реле
- •2.6. Реле времени
- •2.7. Поляризованные реле
- •2.8. Индукционные реле
- •2.9. Реле тока на индукционном принципе
- •2.10. Индукционные реле тока серий рт-80 и рт-90
- •2.11. Индукционные реле направления мощности
- •2.12. Магнитоэлектрические реле
- •2.13. Измерительные органы на полупроводниковой элементной базе
- •2.14. Типовые функциональные элементы полупроводниковых ио
- •2.15. Аналоговые микросхемы, используемые для построения функциональных элементов ио
- •2.16. Основные схемы включения операционных усилителей, используемые в устройствах рз
- •2.17. Простейшие функциональные элементы, выполняемые на оу
- •2.18. Схемы сравнения двух электрических величин
- •2.19. Измерительные органы тока и напряжения на имс
- •2.20. Измерительные органы (реле) с двумя входными величинами на интегральных микросхемах
- •2.21. Элементы логической и исполнительной частей устройств рз
- •2.22. Органы логики на имс
- •Глава третья трансформаторы тока и схемы их соединения
- •3.1. Трансформаторы тока и их погрешности
- •3.2. Параметры, влияющие на уменьшение намагничивающего тока
- •3.3. Требования к точности трансформаторов тока, питающих рз
- •3.4. Выбор трансформаторов тока и допустимой вторичной нагрузки
- •3.5. Типовые схемы соединения обмоток трансформаторов тока
- •3.6. Нагрузка трансформаторов тока
- •3.7. Фильтры симметричных составляющих токов
- •3.8. Новые преобразователи первичного тока
- •Глава четвертая максимальная токовая защита
- •4.1. Принцип действия токовых зашит
- •4.2. Максимальная токовая зашита лэп
- •4.3. Схемы мтз на постоянном оперативном токе
- •4.4. Поведение мтз при двойных замыканиях на землю
- •4.5. Выбор тока срабатывания
- •4.6. Выдержки времени защиты
- •4.7. Максимальная токовая защита с пуском от реле напряжения
- •4.8. Максимальные токовые защиты на переменном оперативном токе
- •4.9. Максимальные токовые защиты с реле прямого действия
- •4.10. Общая оценка и область применения мтз
- •Глава пятая токовые отсечки
- •5.1. Принцип действия токовых отсечек
- •5.2. Схемы отсечек
- •5.3. Отсечки мгновенного действия на линиях с односторонним питанием
- •5.4. Неселективные отсечки
- •5.5. Отсечки на линиях с двусторонним питанием
- •5.6. Отсечки с выдержкой времени
- •Вопросы для самопроверки
- •Глава шестая трансформаторы напряжения и схемы их соединения
- •6.1. Основные сведения
- •6.2. Погрешности трансформатора напряжения
- •6.3. Схемы соединения трансформаторов напряжения
- •6.4. Повреждения в цепях тн и контроль за их исправностью
- •6.5. Емкостные делители напряжения
- •6.6. Фильтр напряжений обратной последовательности
- •Глава седьмая токовая направленная защита
- •7.1. Необходимость направленной защиты в сетях с двусторонним питанием
- •7.2. Функциональная схема и принцип действия токовой направленной защиты
- •7.3. Схемы включения реле направления мощности
- •7.4. Поведение реле направления мощности, включенных на токи неповрежденных фаз
- •7.5. Схемы направленной максимальной токовой защиты
- •7.6. Выбор уставок срабатывания
- •7.7. Мертвая зона
- •7.8. Токовые направленные отсечки
- •7.9. Оценка токовых направленных защит
- •Глава восьмая защита от коротких замыканий на землю в сети с глухозаземленной нейтралью
- •8.1. Общие сведения
- •8.2. Максимальная токовая защита нулевой последовательности
- •8.3. Токовые направленные защиты нулевой последовательности
- •8.4. Отсечки нулевой последовательности
- •8.5. Ступенчатая токовая защита нулевой последовательности
- •8.6. Выбор уставок токовых защит нулевой последовательности
- •8.7. Оценка и область применения токовых ступенчатых защит нп
- •Глава девятая защита от однофазных замыканий на землю в сети с изолированной нейтралью
- •9.1. Токи и напряжения при однофазном замыкании на землю
- •9.2. Основные требования к защите
- •9.3. Принципы выполнения защиты от однофазных замыканий на землю
- •9.4. Фильтры токов и напряжений нулевой последовательности
- •9.5. Токовая защита нулевой последовательности
- •9.6. Направленная защита
- •9.7. Защита, реагирующая на высшие гармоники тока в установившемся режиме
- •9.8. Защиты, реагирующие на токи переходного режима
- •Глава десятая дифференциальная защита линий
- •10.1. Принцип действия продольной дифференциальной защиты
- •10.2. Токи небаланса в дифференциальной защите
- •10.3. Общие принципы выполнения продольной дифференциальной защиты линии
- •10.4. Дифференциальные реле с торможением
- •10.5. Полная схема дифференциальной защиты линий
- •10.6. Устройство контроля исправности соединительных проводов
- •10.7. Продольная дифференциальная защита линий типа дзл
- •10.8. Оценка продольной дифференциальной защиты
- •10.9. Принцип действия и виды поперечных дифференциальных защит параллельных линий
- •10.10. Токовая поперечная дифференциальная зашита
- •10.11. Направленная поперечная дифференциальная защита
- •10.12. Оценка направленных поперечных дифференциальных защит
- •Глава одиннадцатая дистанционная защита
- •11.1. Назначение и принцип действия
- •11.2. Характеристики выдержки времени дистанционных защит
- •11.3. Принципы выполнения селективной защиты сети с помощью ступенчатой дистанционной защиты
- •11.4. Структурная схема дистанционной защиты со ступенчатой характеристикой
- •11.5. Схемы включения дистанционных и пусковых измерительных органов на напряжение и ток сети
- •11.6. Характеристики срабатывания реле сопротивления и их изображение на комплексной плоскости
- •11.7. Общие принципы выполнения реле сопротивления, используемых в дз в качестве измерительных органов, и требования к их конструкциям
- •11.8. Реле сопротивления на диодных схемах сравнения абсолютных значений двух электрических величин
- •11.9. Реле сопротивления на сравнении фаз двух электрических величин. Выполняемые на имс
- •11.10. Схемы трех основных функциональных элементов pc, построенных на сравнении фаз
- •11.11. Реле сопротивления со сложными характеристиками срабатывания, выполненные на имс
- •11.12. Пусковые органы дистанционных защит
- •11.13. Погрешность срабатывания pc, обусловленная током Iр
- •11.14. Искажение действия дистанционных органов
- •11.16. Выполнение схем дистанционных защит
- •11.17. Дистанционная защита типа шдэ-2801, выполняемая на имс
- •11.18. Выбор уставок дистанционной защиты
- •11.19. Оценка дистанционной защиты
- •Глава двенадцатая предотвращение неправильных действий защиты при качаниях
- •12.1. Характер изменения тока, напряжения и сопротивления на зажимах реле при качаниях
- •12.2. Поведение защиты при качаниях
- •12.3. Меры по предотвращению неправильных действий рз при качаниях
- •12.4. Блокирующее устройство, реагирующее на несимметрию токов или напряжений сети
- •12.5. Устройство блокировки при качаниях, реагирующее на скорость изменения тока, напряжения или сопротивления
- •12.6. Блокирующее устройство, реагирующее на скачкообразное приращение электрических величин (векторов тока прямой и обратной последовательностей)
- •Глава тринадцатая высокочастотные защиты
- •13.1. Назначение и виды высокочастотных защит
- •13.2. Принцип действия направленной защиты с вч-блокировкой
11.5. Схемы включения дистанционных и пусковых измерительных органов на напряжение и ток сети
Требования к схемам включения. Измерительные ДО, выполняемые с помощью PC, должны включаться на такие напряжения и токи сети, при которых сопротивление на зажимах реле Zp, во-первых, будет пропорционально расстоянию Zp.к до места повреждения и, во-вторых, будет иметь одинаковые значения (по модулю и углу) при всех видах КЗ в одной точке. Для соблюдения этих требований к ДО необходимо подводить напряжение в месте установки ДЗ, равное падению напряжения в сопротивлении Zp.к до точки К: Up = IкZp.к (рис.11.7). При этом для обеспечения одинакового Zp при всех видах КЗ ток Iр, подводимый к PC, должен равняться току КЗ Iк, определяющему падение напряжения в сопротивлении Zp.к:
(11.3)
С
учетом сказанного ДО включаются на
напряжение и ток петли КЗ. Схемы включения
ДО, реагирующих на междуфазные КЗ и ДО,
реагирующих на однофазные КЗ, должны
быть разными.
Включение дистанционных органов, реагирующих на междуфазные КЗ. Включение на междуфазные напряжения и разность фазных токов осуществляются согласно табл. 11.1. При трехфазных КЗ (рис.11.8, б) все три ДО находятся в одинаковых условиях, к каждому из них подводится междуфазное напряжение, равное Uф. Фазное напряжение равно падению напряжения в проводе от места установки PC до точки К. Отсюда напряжение
г
де
Iк(3)
–
ток
трехфазного КЗ, проходящий по фазе; Zlк
– сопротивление прямой последовательности
фазы от места установки реле до точки
К:
lк
– расстояние до места КЗ; Z1y
– удельное сопротивление прямой
последовательности фазы на 1 км. Ток в
каждом реле равен геометрической
разности токов двух фаз, т.е. Iр(3)
=
Iк(3),
следовательно, сопротивление на зажимах
каждого PC
При двухфазных КЗ, например между фазами В и С (рис.11.8, в), только один ДО, включенный на напряжение между поврежденными фазами В и С, получает напряжение, пропорциональное расстоянию l. Это напряжение равно падению напряжения в фазах В и С: Up(2) = UBC = 2IкZ1к. Ток I(2) =IB – IC = 2Iк. Отсюда находим
При КЗ на фазах АВ и СА Zp находится аналогично и также Zp(2) = Z1ylк. Можно показать, что и при двухфазных КЗ на землю Zp(1,1) = Z1кlк.
Таким образом, при всех видах междуфазных КЗ сопротивление на зажимах реле равно сопротивлению прямой последовательности фазы Z1. Следовательно,
Zp = lк и Zp(3) = Zp(2) =Z1к
Включение PC, выполняющих функции ПО. Они включаются на междуфазное напряжение и фазный ток по табл. 11.2. Определяя, как и в предыдущем случае, значения падения напряжения до точки К (рис.11.8) и находя Zp = Up/Ip, можно убедиться, что при трехфазных КЗ Zp(3) = Z1к, а при двухфазных КЗ в той же точке Zp(2) = 2Z1к. Таким образом, данная схема, удовлетворяя первому из заданных условий Zp =lк, не обеспечивает второго условия, так как Z(3)p.к ≠ Z(2)p.к. Поэтому схемы включения PC на междуфазное напряжение и фазный ток не должны применяться для включения ДО I и II зон. Включение PC по табл. 11.2 используется для ИО III зоны, если они одновременно выполняют функции ПО.
П
ри
обеих схемах включения в случае
двухфазного КЗ (рис.11.8, в)
из трех ДО правильно определяет
удаленность повреждения только один,
включенный на напряжение между
поврежденными фазами.
Способы включения ДО на разность токов двух фаз. Для включения PC на разность токов согласно табл.11.1 обычно используются промежуточные трансформаторы тока TAL или трансреакторы TAV — датчики тока, у которых для этой цели предусматриваются две первичных обмотки 1 и 2 (рис.11.9). Каждая первичная обмотка включается на ток фазы по табл.11.1, так чтобы наводимые ими магнитные потоки в сердечнике TAL или TAV были направлены встречно и создавали результирующий поток Фр = ФА – Фв, пропорциональный разности токов, питающих первичные обмотки. Ток вторичных обмоток 3 (или ЭДС трансреактора) будет также пропорционален разности указанных первичных токов IA – IB.
В
ключение
дистанционных органов, реагирующих на
однофазные КЗ.
Дистанционные органы, предназначенные
для определения удаленности мест
однофазных КЗ, включаются по схеме с
токовой компенсацией (рис.11.10, а).
Схема предусматривает три PC,
каждое из которых включается согласно
табл.11.3 на напряжение Uф
и ток Ip
= Iф
+ k3I0,
где Iф
– ток той же фазы, что и напряжение Uф;
k3I0
– ток,
пропорциональный току НП.
Коэффициент
пропорциональности
.
При таком значении k
сопротивление
на зажимах реле при однофазных КЗ
получается равным сопротивлению прямой
последовательности до места КЗ Z1.
Следовательно,
при включении по табл.11.3 ИО, реагирующего
на однофазные КЗ, сопротивление Zр
на
его зажимах получается таким же, как и
у реле, реагирующих на междуфазные КЗ
и включенных по табл.11.1. В обоих случаях
Zp=Zl.
П
окажем,
что выбранная схема компенсации
обеспечивает Zр
= Z1.
Рассмотрим однофазное КЗ (рис.11.11),
например на фазе А. Согласно табл.11.3
сопротивление на зажимах PC
фазы А:
(11.4)
В
ыразим
напряжение фазы А
в месте установки ДЗ (в точке Р)
через симметричные составляющие UA
= U1
+ U2
+ U0.
Каждая
составляющая в точке Р
равна напряжению соответствующей
последовательности в точке К
и
падению напряжения той же последовательности
на участке КР
(рис.11.11).
Отсюда
(11.5)
г
де
U1K,
U2K,
U0K
— напряжения
прямой, обратной и нулевой последовательностей
в точке К;
Il,
I2,
I0
—симметричные
составляющие тока КЗ; Z1,
Z2,
Z0
— сопротивления прямой, обратной и
нулевой последовательностей участка
КР.
Поскольку на поврежденной фазе А в месте КЗ UA = 0, поэтому U1K + U2K + U0K = 0,
(11.5a)
Прибавляя и вычитая в правой части уравнения (11.5а) I0Z1 и учитывая, что для ЛЭП сопротивление Z1 = Z2 и что для фазы А сумма I1 + I2 + I0 = IA получаем
(11.5б)
Вынесем в (11.5б) за скобки Z1 умножим и разделим на 3 второй член в правой части равенства, после чего подставим преобразованное выражение UА в (11.4), тогда
(11.6)
Учитывая,
что в (11.6)
,
и производя сокращения, получаем
(11.7)
Выражение (11.7) справедливо для однофазных замыканий фаз В и С и для КЗ на землю любых двух фаз. Таким образом, при включении PC по схеме с токовой компенсацией сопротивление Zp = Zp.к имеет одинаковые значения Z1 при всех видах КЗ на землю и не зависит от соотношения токов I0 и Iф.
При однофазном КЗ правильно работает только одно реле, включенное на напряжение и ток поврежденной фазы. Два других реле, включенные на ток и напряжение неповрежденных фаз, имеют Zp > Z1. Схема с токовой компенсацией отвечает требованиям, предъявляемым к ДО, и получила распространение для ИО, реагирующих на КЗ на землю.
Для выполнения токовой компенсации часто применяется схема, приведенная на рис.11.10, б. Реле питается током через промежуточный трансформатор или трансреактор с двумя первичными обмотками. Одна из них wф включена на ток фазы Iф, а вторая w0 — на ток 3I0. Их число витков подбирается так, чтобы wф/w0 = 1/k. Результирующий поток первичных обмоток Фрез = Фф + kФ0 = Iф + k3I0, поэтому вторичный ток трансформатора или вторичная ЭДС трансреактора будут пропорциональны току Iф + k3I0. Обычно k < 1.
Условия работы дистанционных органов при двойных замыканиях на землю. В сети с малым током замыкания на землю ДЗ должны реагировать на междуфазные КЗ, и их ДО включаются на междуфазные напряжения и разность фазных токов. Как указывалось, в таких сетях возможны двойные замыкания на землю (рис.11.12). Защита в этом случае должна отключать одно место повреждения. Исследование условий работы ДЗ при двойных замыканиях на землю показывает, что они не могут обеспечить четкого выполнения этого требования. Наилучшие результаты получаются, если на участке К1-К2 (рис.11.12) между двумя точками повреждения ДО включены на фазное напряжение по схеме с токовой компенсацией, а на участке между точкой повреждения и источником питания — на междуфазное напряжение и разность фазных токов. Для этого ДО нормально включены на междуфазное напряжение и разность фазных токов. При появлении тока НП, всегда возникающего на участке между точками замыкания на землю (К1 и К2), ДО, установленные на этом участке, автоматически переключаются на напряжение фазы и ток Iф + k3I0.