
- •Глава первая общие понятия о релейной защите
- •1.1. Назначение релейной защиты
- •1.2. Повреждения в электроустановках
- •1.3. Векторные диаграммы токов и напряжений при кз
- •1.4. Ненормальные режимы
- •1.5. Основные требования, предъявляемые к устройствам релейной защиты
- •1.6. Структурные части и основные элементы рз
- •1.7. Виды устройств рз
- •1.8. Изображение схем рз на чертежах
- •1.9. Источники и схемы оперативного тока
- •Глава вторая принципы построения измерительных и логических органов релейной защиты
- •2.1. Общие принципы конструктивного исполнения реле
- •2.2. Электромеханические реле
- •2.3. Конструкции реле, выполняемых на электромагнитном принципе
- •2.4. Промежуточные реле (логические элементы)
- •2.5. Указательные реле
- •2.6. Реле времени
- •2.7. Поляризованные реле
- •2.8. Индукционные реле
- •2.9. Реле тока на индукционном принципе
- •2.10. Индукционные реле тока серий рт-80 и рт-90
- •2.11. Индукционные реле направления мощности
- •2.12. Магнитоэлектрические реле
- •2.13. Измерительные органы на полупроводниковой элементной базе
- •2.14. Типовые функциональные элементы полупроводниковых ио
- •2.15. Аналоговые микросхемы, используемые для построения функциональных элементов ио
- •2.16. Основные схемы включения операционных усилителей, используемые в устройствах рз
- •2.17. Простейшие функциональные элементы, выполняемые на оу
- •2.18. Схемы сравнения двух электрических величин
- •2.19. Измерительные органы тока и напряжения на имс
- •2.20. Измерительные органы (реле) с двумя входными величинами на интегральных микросхемах
- •2.21. Элементы логической и исполнительной частей устройств рз
- •2.22. Органы логики на имс
- •Глава третья трансформаторы тока и схемы их соединения
- •3.1. Трансформаторы тока и их погрешности
- •3.2. Параметры, влияющие на уменьшение намагничивающего тока
- •3.3. Требования к точности трансформаторов тока, питающих рз
- •3.4. Выбор трансформаторов тока и допустимой вторичной нагрузки
- •3.5. Типовые схемы соединения обмоток трансформаторов тока
- •3.6. Нагрузка трансформаторов тока
- •3.7. Фильтры симметричных составляющих токов
- •3.8. Новые преобразователи первичного тока
- •Глава четвертая максимальная токовая защита
- •4.1. Принцип действия токовых зашит
- •4.2. Максимальная токовая зашита лэп
- •4.3. Схемы мтз на постоянном оперативном токе
- •4.4. Поведение мтз при двойных замыканиях на землю
- •4.5. Выбор тока срабатывания
- •4.6. Выдержки времени защиты
- •4.7. Максимальная токовая защита с пуском от реле напряжения
- •4.8. Максимальные токовые защиты на переменном оперативном токе
- •4.9. Максимальные токовые защиты с реле прямого действия
- •4.10. Общая оценка и область применения мтз
- •Глава пятая токовые отсечки
- •5.1. Принцип действия токовых отсечек
- •5.2. Схемы отсечек
- •5.3. Отсечки мгновенного действия на линиях с односторонним питанием
- •5.4. Неселективные отсечки
- •5.5. Отсечки на линиях с двусторонним питанием
- •5.6. Отсечки с выдержкой времени
- •Вопросы для самопроверки
- •Глава шестая трансформаторы напряжения и схемы их соединения
- •6.1. Основные сведения
- •6.2. Погрешности трансформатора напряжения
- •6.3. Схемы соединения трансформаторов напряжения
- •6.4. Повреждения в цепях тн и контроль за их исправностью
- •6.5. Емкостные делители напряжения
- •6.6. Фильтр напряжений обратной последовательности
- •Глава седьмая токовая направленная защита
- •7.1. Необходимость направленной защиты в сетях с двусторонним питанием
- •7.2. Функциональная схема и принцип действия токовой направленной защиты
- •7.3. Схемы включения реле направления мощности
- •7.4. Поведение реле направления мощности, включенных на токи неповрежденных фаз
- •7.5. Схемы направленной максимальной токовой защиты
- •7.6. Выбор уставок срабатывания
- •7.7. Мертвая зона
- •7.8. Токовые направленные отсечки
- •7.9. Оценка токовых направленных защит
- •Глава восьмая защита от коротких замыканий на землю в сети с глухозаземленной нейтралью
- •8.1. Общие сведения
- •8.2. Максимальная токовая защита нулевой последовательности
- •8.3. Токовые направленные защиты нулевой последовательности
- •8.4. Отсечки нулевой последовательности
- •8.5. Ступенчатая токовая защита нулевой последовательности
- •8.6. Выбор уставок токовых защит нулевой последовательности
- •8.7. Оценка и область применения токовых ступенчатых защит нп
- •Глава девятая защита от однофазных замыканий на землю в сети с изолированной нейтралью
- •9.1. Токи и напряжения при однофазном замыкании на землю
- •9.2. Основные требования к защите
- •9.3. Принципы выполнения защиты от однофазных замыканий на землю
- •9.4. Фильтры токов и напряжений нулевой последовательности
- •9.5. Токовая защита нулевой последовательности
- •9.6. Направленная защита
- •9.7. Защита, реагирующая на высшие гармоники тока в установившемся режиме
- •9.8. Защиты, реагирующие на токи переходного режима
- •Глава десятая дифференциальная защита линий
- •10.1. Принцип действия продольной дифференциальной защиты
- •10.2. Токи небаланса в дифференциальной защите
- •10.3. Общие принципы выполнения продольной дифференциальной защиты линии
- •10.4. Дифференциальные реле с торможением
- •10.5. Полная схема дифференциальной защиты линий
- •10.6. Устройство контроля исправности соединительных проводов
- •10.7. Продольная дифференциальная защита линий типа дзл
- •10.8. Оценка продольной дифференциальной защиты
- •10.9. Принцип действия и виды поперечных дифференциальных защит параллельных линий
- •10.10. Токовая поперечная дифференциальная зашита
- •10.11. Направленная поперечная дифференциальная защита
- •10.12. Оценка направленных поперечных дифференциальных защит
- •Глава одиннадцатая дистанционная защита
- •11.1. Назначение и принцип действия
- •11.2. Характеристики выдержки времени дистанционных защит
- •11.3. Принципы выполнения селективной защиты сети с помощью ступенчатой дистанционной защиты
- •11.4. Структурная схема дистанционной защиты со ступенчатой характеристикой
- •11.5. Схемы включения дистанционных и пусковых измерительных органов на напряжение и ток сети
- •11.6. Характеристики срабатывания реле сопротивления и их изображение на комплексной плоскости
- •11.7. Общие принципы выполнения реле сопротивления, используемых в дз в качестве измерительных органов, и требования к их конструкциям
- •11.8. Реле сопротивления на диодных схемах сравнения абсолютных значений двух электрических величин
- •11.9. Реле сопротивления на сравнении фаз двух электрических величин. Выполняемые на имс
- •11.10. Схемы трех основных функциональных элементов pc, построенных на сравнении фаз
- •11.11. Реле сопротивления со сложными характеристиками срабатывания, выполненные на имс
- •11.12. Пусковые органы дистанционных защит
- •11.13. Погрешность срабатывания pc, обусловленная током Iр
- •11.14. Искажение действия дистанционных органов
- •11.16. Выполнение схем дистанционных защит
- •11.17. Дистанционная защита типа шдэ-2801, выполняемая на имс
- •11.18. Выбор уставок дистанционной защиты
- •11.19. Оценка дистанционной защиты
- •Глава двенадцатая предотвращение неправильных действий защиты при качаниях
- •12.1. Характер изменения тока, напряжения и сопротивления на зажимах реле при качаниях
- •12.2. Поведение защиты при качаниях
- •12.3. Меры по предотвращению неправильных действий рз при качаниях
- •12.4. Блокирующее устройство, реагирующее на несимметрию токов или напряжений сети
- •12.5. Устройство блокировки при качаниях, реагирующее на скорость изменения тока, напряжения или сопротивления
- •12.6. Блокирующее устройство, реагирующее на скачкообразное приращение электрических величин (векторов тока прямой и обратной последовательностей)
- •Глава тринадцатая высокочастотные защиты
- •13.1. Назначение и виды высокочастотных защит
- •13.2. Принцип действия направленной защиты с вч-блокировкой
11.2. Характеристики выдержки времени дистанционных защит
З
ависимость
времени
действия ДЗ от расстояния или сопротивления
до места КЗ t3
=
f(lp.к)
или t3=
f(Zp.к)
называется
характеристикой выдержки времени ДЗ.
По
характеру этой зависимости ДЗ делятся
на три группы: с плавнонарастающими
(наклонными) характеристиками времени
действия, ступенчатыми и комбинированными
характеристиками (рис.11.4). Ступенчатые
ДЗ действуют быстрее, чем ДЗ с наклонной
и комбинированной характеристиками и,
как правило, получаются проще в
конструктивном исполнении. Наиболее
распространенные ДЗ со ступенчатой
характеристикой выполняются обычно с
тремя ступенями времени: tI,
tII,
tIII,
соответствующими трем зонам действия
ДЗ (рис.11.4).
11.3. Принципы выполнения селективной защиты сети с помощью ступенчатой дистанционной защиты
Н
а
ЛЭП с двусторонним питанием ДЗ
устанавливаются с обеих сторон каждой
ЛЭП и должны действовать при направлении
мощности от шин в ЛЭП. Дистанционные
РЗ, действующие при одном направлении
мощности, необходимо согласовать между
собой по времени и по зоне действия так,
чтобы обеспечивалось селективное
отключение КЗ. В рассматриваемой схеме
(рис.11.5) согласуются между собой ДЗ1,
ДЗ3,
ДЗ5 и
ДЗ6,
ДЗ4,
ДЗ2.
С учетом того, что первые ступени ДЗ не имеют выдержки времени (tI = 0), по условию селективности они не должны действовать за пределами защищаемой ЛЭП. Исходя из этого протяженность первой ступени, не имеющей выдержки времени (tI = 0), берется меньше протяженности защищаемой ЛЭП и обычно составляет 0,8-0,9 длины ЛЭП. Остальная часть защищаемой ЛЭП и шины противоположной подстанции охватываются второй ступенью ДЗ этой ЛЭП. Протяженность и выдержка времени второй ступени согласуются (обычно) с протяженностью и выдержкой первой ступени ДЗ следующего участка. Например, у второй ступени ДЗ1 зона действия отстраивается от конца первой ступени ДЗ3 (т.е. ZII(1) < ZI(3)), а время действия выбирается на ступень Δt больше tI(3):
Последняя третья ступень ДЗ является резервной, ее протяженность выбирается из условия охвата следующего участка, на случай отказа его РЗ или выключателя. Выдержка времени принимается на Δt больше времени действия второй или третьей зоны ДЗ следующего участка. При этом зона действия третьей ступени должна быть отстроена от конца второй или третьей зоны следующего участка.
11.4. Структурная схема дистанционной защиты со ступенчатой характеристикой
В отечественных энергосистемах ДЗ применяется для действия при междуфазных КЗ, а для действия при однофазных КЗ используется более простая ступенчатая МТЗ НП, рассмотренная в гл. 8. На рис.11.6 приведена упрощенная структурная схема трехступенчатой ДЗ от междуфазных КЗ с направленными измерительными ДО. Защита имеет четыре функциональные части, обведенные пунктиром на рис.11.6, а: измерительную 1, логическую 2, исполнительную 3, вспомогательную 4.
Измерительная часть 1 состоит из измерительных ДО, определяющих удаленность места КЗ или, точнее говоря, всю зону степени, в пределах которой возникло повреждение. Дистанционный ИО выполняется с помощью направленных минимальных PC, действующих при определенном направлении мощности КЗ (от шин в линию). Реле сопротивления включается через ТН и ТТ на первичные напряжения Up.п и ток Iр.п в начале защищаемой ЛЭП. Вторичное напряжение на зажимах PC Uр = Up.п/КU, а вторичный ток Iр = Iр.п/КI.
Сопротивление на входных зажимах реле определяется по выражению
(11.2)
где
– первичное значение сопротивления,
подведенного к зажимам реле.
П
ервичное
сопротивление
называется
сопротивлением срабатывания ДЗ. В
трехступенчатой ДЗ, изображенной на
рис.11.6, для каждой ступени установлен
свой отдельный комплект ДО KZI,
KZII,
KZIII,
действующий
при КЗ в пределах I,
II,
III
зон (ступеней) соответственно. В §11.5
показано, что для
правильного определения зоны повреждения
при различных видах двухфазных КЗ е
каждой ступени ДЗ необходимо устанавливать
три PC
– одно
для действия при КЗ между фазами АВ,
второе
– при КЗ между фазами ВС
и
третье – при КЗ между фазами СА.
Схема с тремя измерительными PC в каждой ступени получила название трехсистемной. На рис.11.6 для упрощения показан один комплект KZBC и указано место подсоединения двух других KZAB и KZCA. Срабатывая, измерительные реле KZ действуют на логическую часть ДЗ2.
Логическая часть 2 имеет два органа времени КТ2 (второй ступени tII) и КТЗ (третьей ступени tIII). Первая ступень ДЗ замедления не имеет (tI= 0).
Логические органы (ЛО), ИЛИ, И, НЕ, получив сигналы от KZ и элементов блокирующей части 4, формируют выходные сигналы, воздействующие на органы времени и ИО.
Исполнительный орган 3 (ИО). Получив сигнал от КТ2, КТЗ или непосредственно от KZI, АВ (ВС, СА) ИО передает команду на отключение выключателя. Исполнительный орган выполняется с помощью электромеханического промежуточного реле или в виде статического устройства на тиристорах.
Вспомогательное блокирующее устройство 4 служит для блокирования действия ДЗ путем автоматического вывода ее из работы в режимах, когда ДЗ может неправильно сработать при отсутствии повреждения на защищаемой ЛЭП. К таким режимам относятся качания в энергосистеме и повреждения в цепях ТН, питающих ДЗ. Устройство 4 состоит из блокировки при качаниях УБК и блокировки УБН, действующей при неисправностях в цепях ТН.
Блокировка при качаниях УБК. Во время качаний напряжение Up в месте установки ДЗ периодически снижается, а ток Ip в защищаемой ЛЭП возрастает, при этом соответственно уменьшается Zp = Up/Iр. Реагирующие на Up, Iр и Zp измерительные органы PC могут прийти в действие, что вызовет неправильное срабатывание первой ступени ДЗ, работающей мгновенно. Вторая и третья ступени имеют выдержку времени, и они, как правило, не успевают сработать за время периода качаний. Поэтому блокировка УБК, как показано на рис.11.6, блокирует первую ступень, а в тех случаях, когда время действия второй ступени мало (tII < 1 с), – и вторую. Принцип действия блокировки при качаниях рассмотрен в гл. 13.
Блокировка УБН. При неисправностях в цепях напряжения ТН напряжение Up, подводимое к PC, исчезает или резко понижается. В результате этого реле сопротивления, включенные на это напряжение, приходят в действие, что приводит к неправильному срабатыванию ДЗ. При исправном состоянии цепей напряжения с выхода УБН, схемы которой рассмотрены в §6.4, на входы всех логических элементов И поступает логический сигнал 1, разрешающий появление сигнала на элементах И и, как следствие этого, возможность действия ДЗ, если срабатывают ИО (PC). При неисправностях в цепях ТН выходной сигнал УБН изменяется с логической 1 до логического 0, чем блокируется действие элемента И, т.е. исключается возможность появления сигнала на его выходе.
Работа ДЗ. В нормальном режиме Zp = Up.н/Iр.н = Zp.н (здесь Up.н, Iр.н, Zp.н – напряжение, ток, сопротивление на зажимах PC в режиме максимальной нагрузки, когда Zp.н имеет наименьшее значение). Сопротивления срабатывания PC всех ступеней выбираются меньше Zp.н min. Поэтому PC всех ступеней, а следовательно, и ДЗ в целом не действуют.
В режиме короткого замыкания. Если КЗ возникло в пределах первой ступени, в точке К1 (рис. 11.6, б), то Zp < ZI, KZI приходит в действие, срабатывает и блокировка УБК, на входе И1 появляются три сигнала: УБК, KZ1 и УБН. На выходе И1 появляется сигнал о срабатывании KZ1, который поступает на ИО; ДЗ действует на отключение ЛЭП без выдержки времени (с t = 0).
При КЗ в I зоне кроме KZI работают ИО KZII и KZIII, но II и III ступени имеют выдержки времени, и поэтому раньше срабатывает I ступень. Если КЗ происходит во II зоне (точка К2), но за пределами I зоны, то KZI не действует, работают KZII и KZIII, которые через соответствующие логические элементы ИЛИ, И, НЕ посылают сигналы на КТ2 и КТ3. Реле КТ2 срабатывает с tII раньше КТ3 и подает сигнал на ИО, последний замыкает цепь отключения выключателя ЛЭП. При КЗ в точке КЗ за пределами II зоны, но в пределах III зоны KZI и KZII не действуют, срабатывает KZIII с выдержкой времени tIII на реле КТ3, и затем выходной элемент ИО подает команду на отключение.
В сетях с изолированными нейтралями применяются ДЗ с ненаправленными PC. В схему ДЗ при этом дополнительно вводятся РНМ, не позволяющие ДЗ срабатывать при направлении мощности КЗ к шинам подстанции. Применяется также односистемная ДЗ с одним ДО и токовыми ПО. Особенностью этой схемы является использование в качестве ДО защиты от всех видов междуфазных КЗ только одного PC. При этом для правильного действия ДЗ при различных видах КЗ к реле в момент возникновения повреждения подводятся токи и напряжения соответствующих поврежденных фаз в сочетаниях, обеспечивающих одинаковый замер сопротивления (прямой последовательности Z1) до места КЗ.