
- •Глава первая общие понятия о релейной защите
- •1.1. Назначение релейной защиты
- •1.2. Повреждения в электроустановках
- •1.3. Векторные диаграммы токов и напряжений при кз
- •1.4. Ненормальные режимы
- •1.5. Основные требования, предъявляемые к устройствам релейной защиты
- •1.6. Структурные части и основные элементы рз
- •1.7. Виды устройств рз
- •1.8. Изображение схем рз на чертежах
- •1.9. Источники и схемы оперативного тока
- •Глава вторая принципы построения измерительных и логических органов релейной защиты
- •2.1. Общие принципы конструктивного исполнения реле
- •2.2. Электромеханические реле
- •2.3. Конструкции реле, выполняемых на электромагнитном принципе
- •2.4. Промежуточные реле (логические элементы)
- •2.5. Указательные реле
- •2.6. Реле времени
- •2.7. Поляризованные реле
- •2.8. Индукционные реле
- •2.9. Реле тока на индукционном принципе
- •2.10. Индукционные реле тока серий рт-80 и рт-90
- •2.11. Индукционные реле направления мощности
- •2.12. Магнитоэлектрические реле
- •2.13. Измерительные органы на полупроводниковой элементной базе
- •2.14. Типовые функциональные элементы полупроводниковых ио
- •2.15. Аналоговые микросхемы, используемые для построения функциональных элементов ио
- •2.16. Основные схемы включения операционных усилителей, используемые в устройствах рз
- •2.17. Простейшие функциональные элементы, выполняемые на оу
- •2.18. Схемы сравнения двух электрических величин
- •2.19. Измерительные органы тока и напряжения на имс
- •2.20. Измерительные органы (реле) с двумя входными величинами на интегральных микросхемах
- •2.21. Элементы логической и исполнительной частей устройств рз
- •2.22. Органы логики на имс
- •Глава третья трансформаторы тока и схемы их соединения
- •3.1. Трансформаторы тока и их погрешности
- •3.2. Параметры, влияющие на уменьшение намагничивающего тока
- •3.3. Требования к точности трансформаторов тока, питающих рз
- •3.4. Выбор трансформаторов тока и допустимой вторичной нагрузки
- •3.5. Типовые схемы соединения обмоток трансформаторов тока
- •3.6. Нагрузка трансформаторов тока
- •3.7. Фильтры симметричных составляющих токов
- •3.8. Новые преобразователи первичного тока
- •Глава четвертая максимальная токовая защита
- •4.1. Принцип действия токовых зашит
- •4.2. Максимальная токовая зашита лэп
- •4.3. Схемы мтз на постоянном оперативном токе
- •4.4. Поведение мтз при двойных замыканиях на землю
- •4.5. Выбор тока срабатывания
- •4.6. Выдержки времени защиты
- •4.7. Максимальная токовая защита с пуском от реле напряжения
- •4.8. Максимальные токовые защиты на переменном оперативном токе
- •4.9. Максимальные токовые защиты с реле прямого действия
- •4.10. Общая оценка и область применения мтз
- •Глава пятая токовые отсечки
- •5.1. Принцип действия токовых отсечек
- •5.2. Схемы отсечек
- •5.3. Отсечки мгновенного действия на линиях с односторонним питанием
- •5.4. Неселективные отсечки
- •5.5. Отсечки на линиях с двусторонним питанием
- •5.6. Отсечки с выдержкой времени
- •Вопросы для самопроверки
- •Глава шестая трансформаторы напряжения и схемы их соединения
- •6.1. Основные сведения
- •6.2. Погрешности трансформатора напряжения
- •6.3. Схемы соединения трансформаторов напряжения
- •6.4. Повреждения в цепях тн и контроль за их исправностью
- •6.5. Емкостные делители напряжения
- •6.6. Фильтр напряжений обратной последовательности
- •Глава седьмая токовая направленная защита
- •7.1. Необходимость направленной защиты в сетях с двусторонним питанием
- •7.2. Функциональная схема и принцип действия токовой направленной защиты
- •7.3. Схемы включения реле направления мощности
- •7.4. Поведение реле направления мощности, включенных на токи неповрежденных фаз
- •7.5. Схемы направленной максимальной токовой защиты
- •7.6. Выбор уставок срабатывания
- •7.7. Мертвая зона
- •7.8. Токовые направленные отсечки
- •7.9. Оценка токовых направленных защит
- •Глава восьмая защита от коротких замыканий на землю в сети с глухозаземленной нейтралью
- •8.1. Общие сведения
- •8.2. Максимальная токовая защита нулевой последовательности
- •8.3. Токовые направленные защиты нулевой последовательности
- •8.4. Отсечки нулевой последовательности
- •8.5. Ступенчатая токовая защита нулевой последовательности
- •8.6. Выбор уставок токовых защит нулевой последовательности
- •8.7. Оценка и область применения токовых ступенчатых защит нп
- •Глава девятая защита от однофазных замыканий на землю в сети с изолированной нейтралью
- •9.1. Токи и напряжения при однофазном замыкании на землю
- •9.2. Основные требования к защите
- •9.3. Принципы выполнения защиты от однофазных замыканий на землю
- •9.4. Фильтры токов и напряжений нулевой последовательности
- •9.5. Токовая защита нулевой последовательности
- •9.6. Направленная защита
- •9.7. Защита, реагирующая на высшие гармоники тока в установившемся режиме
- •9.8. Защиты, реагирующие на токи переходного режима
- •Глава десятая дифференциальная защита линий
- •10.1. Принцип действия продольной дифференциальной защиты
- •10.2. Токи небаланса в дифференциальной защите
- •10.3. Общие принципы выполнения продольной дифференциальной защиты линии
- •10.4. Дифференциальные реле с торможением
- •10.5. Полная схема дифференциальной защиты линий
- •10.6. Устройство контроля исправности соединительных проводов
- •10.7. Продольная дифференциальная защита линий типа дзл
- •10.8. Оценка продольной дифференциальной защиты
- •10.9. Принцип действия и виды поперечных дифференциальных защит параллельных линий
- •10.10. Токовая поперечная дифференциальная зашита
- •10.11. Направленная поперечная дифференциальная защита
- •10.12. Оценка направленных поперечных дифференциальных защит
- •Глава одиннадцатая дистанционная защита
- •11.1. Назначение и принцип действия
- •11.2. Характеристики выдержки времени дистанционных защит
- •11.3. Принципы выполнения селективной защиты сети с помощью ступенчатой дистанционной защиты
- •11.4. Структурная схема дистанционной защиты со ступенчатой характеристикой
- •11.5. Схемы включения дистанционных и пусковых измерительных органов на напряжение и ток сети
- •11.6. Характеристики срабатывания реле сопротивления и их изображение на комплексной плоскости
- •11.7. Общие принципы выполнения реле сопротивления, используемых в дз в качестве измерительных органов, и требования к их конструкциям
- •11.8. Реле сопротивления на диодных схемах сравнения абсолютных значений двух электрических величин
- •11.9. Реле сопротивления на сравнении фаз двух электрических величин. Выполняемые на имс
- •11.10. Схемы трех основных функциональных элементов pc, построенных на сравнении фаз
- •11.11. Реле сопротивления со сложными характеристиками срабатывания, выполненные на имс
- •11.12. Пусковые органы дистанционных защит
- •11.13. Погрешность срабатывания pc, обусловленная током Iр
- •11.14. Искажение действия дистанционных органов
- •11.16. Выполнение схем дистанционных защит
- •11.17. Дистанционная защита типа шдэ-2801, выполняемая на имс
- •11.18. Выбор уставок дистанционной защиты
- •11.19. Оценка дистанционной защиты
- •Глава двенадцатая предотвращение неправильных действий защиты при качаниях
- •12.1. Характер изменения тока, напряжения и сопротивления на зажимах реле при качаниях
- •12.2. Поведение защиты при качаниях
- •12.3. Меры по предотвращению неправильных действий рз при качаниях
- •12.4. Блокирующее устройство, реагирующее на несимметрию токов или напряжений сети
- •12.5. Устройство блокировки при качаниях, реагирующее на скорость изменения тока, напряжения или сопротивления
- •12.6. Блокирующее устройство, реагирующее на скачкообразное приращение электрических величин (векторов тока прямой и обратной последовательностей)
- •Глава тринадцатая высокочастотные защиты
- •13.1. Назначение и виды высокочастотных защит
- •13.2. Принцип действия направленной защиты с вч-блокировкой
10.12. Оценка направленных поперечных дифференциальных защит
Положительными особенностями РЗ являются простота схемы, меньшая стоимость по сравнению с продольной дифференциальной РЗ, отсутствие выдержки времени, нереагирование на качания, простота выбора параметров.
К недостаткам РЗ нужно отнести каскадное действие, вызывающее замедленное отключение КЗ в зоне каскадного действия, мертвую зону по напряжению, необходимость вывода из действия РЗ при отключении одной ЛЭП, в связи с чем требуется дополнительная полноценная РЗ для оставшейся в работе ЛЭП; неправильную работу РЗ при обрыве провода ЛЭП с односторонним заземлением.
Защита применяется в сетях 110-220 кВ как дополнительная к основной быстродействующей защите. В сетях 6-10 кВ эта защита используется как основная, ускоряющая отключение повреждения.
Вопросы для самопроверки
1. Почему дифференциальная защита выполняется без выдержки времени?
2. Чем опасен обрыв соединительного провода в плече дифференциальной защиты?
3. Каковы причины, вызывающие ток небаланса в реле в нормальном режиме и при внешнем КЗ?
4. Как выполнить схему направленной поперечной дифференциальной защиты при отсутствии специального реле направления мощности двустороннего действия?
5. В чем недостаток каскадного действия защиты?
6. Почему наличие блокировки по напряжению повышает чувствительность направленной поперечной дифференциальной защиты?
Глава одиннадцатая дистанционная защита
11.1. Назначение и принцип действия
В
сетях сложной конфигурации с несколькими
источниками питания простые и направленные
МТЗ (НТЗ) не могут обеспечить селективного
отключения КЗ. Так, например, при КЗ на
W2
(рис.11.1)
НТЗ 3
должна
подействовать быстрее РЗ 1,
а
при КЗ на W1,
наоборот,
НТЗ 1
должна
подействовать быстрее РЗ 3.
Эти
противоречивые требования не могут
быть выполнены с помощью НТЗ. Кроме
того, МТЗ и НТЗ часто не удовлетворяют
требованиям быстродействия и
чувствительности. Селективное отключение
КЗ в сложных кольцевых сетях может быть
обеспечено с помощью дистанционной РЗ
(ДЗ).
Выдержка времени ДЗ t3 зависит от расстояния (дистанции) t3 = f(lр.к) (рис.11.2) между местом установки РЗ (точка Р) и точкой КЗ (К), т.е. lр.к, и нарастает с увеличением этого расстояния. Ближайшая к месту повреждения ДЗ имеет меньшую выдержку времени, чем более удаленные ДЗ.
Н
апример,
при КЗ в точке К1
(рис.11.2)
ДЗ2,
расположенная
ближе к месту повреждения, работает с
меньшей выдержкой времени, чем более
удаленная ДЗ1.
Если
же КЗ возникает в точке К2,
то
время действия ДЗ2
увеличивается,
и КЗ селективно отключается ближайшей
к месту повреждения ДЗ3.
Основным элементом ДЗ является дистанционный измерительный орган (ДО), определяющий удаленность КЗ от места установки РЗ. В качестве ДО используются реле сопротивления (PC), реагирующие на полное, реактивное или активное сопротивление поврежденного участка ЛЭП (Z, X, R). Сопротивление фазы ЛЭП от места установки реле Р до места КЗ (точки К) пропорционально длине этого участка lр.к, так как Zр.к = Zylр.к; Xр.к = Xylр.к; Rр.к = Rylр.к, где Zр.к, Xр.к, Rр.к – полное, реактивное и активное сопротивления участка ЛЭП длиной lр.к; Zy, Xy, Ry – удельные сопротивления на 1 км ЛЭП.
Таким образом, поведение дистанционного органа, реагирующего на сопротивление линии, зависит от расстояния до места повреждения.
В
зависимости от вида сопротивления, на
которое реагирует ДО (Z,
X
или
R),
ДЗ подразделяются на РЗ полного,
реактивного и активного сопротивлений.
Дистанционные РЗ реактивного и активного
сопротивлений применяются редко, поэтому
в дальнейшем рассматриваются только
ДЗ, построенные на измерении полного
сопротивления. Реле сопротивления,
применяемые в ДЗ для определения
сопротивления Zр.к
до точки КЗ, контролируют напряжение и
ток в месте установки ДЗ (рис.11.3). К
зажимам PC
подводятся вторичные значения U,
и Iр
от
ТН и ТТ. Реле выполняется так, чтобы его
поведение в общем случае зависело от
отношения Up
к
Ip.
Это
отношение является некоторым сопротивлением
Zp.
При КЗ Zp
=
Zр.к,
и при определенных значениях Zр.к
PC
срабатывает; оно реагирует на уменьшение
Zp,
поскольку при КЗ Up,
уменьшается, а Ip
возрастает.
Наибольшее
значение Zp,
при
котором PC
с
рабатывает,
называется сопротивлением срабатывания
реле
Zc.p:
(11.1)
Для обеспечения селективности в сетях сложной конфигурации на ЛЭП с двусторонним питанием ДЗ необходимо выполнять направленными, действующими при направлении мощности КЗ от шин в ЛЭП. Направленность действия ДЗ обеспечивается при помощи дополнительных РHМ или применением направленных PC, способных реагировать и на направление мощности КЗ.