
- •Глава первая общие понятия о релейной защите
- •1.1. Назначение релейной защиты
- •1.2. Повреждения в электроустановках
- •1.3. Векторные диаграммы токов и напряжений при кз
- •1.4. Ненормальные режимы
- •1.5. Основные требования, предъявляемые к устройствам релейной защиты
- •1.6. Структурные части и основные элементы рз
- •1.7. Виды устройств рз
- •1.8. Изображение схем рз на чертежах
- •1.9. Источники и схемы оперативного тока
- •Глава вторая принципы построения измерительных и логических органов релейной защиты
- •2.1. Общие принципы конструктивного исполнения реле
- •2.2. Электромеханические реле
- •2.3. Конструкции реле, выполняемых на электромагнитном принципе
- •2.4. Промежуточные реле (логические элементы)
- •2.5. Указательные реле
- •2.6. Реле времени
- •2.7. Поляризованные реле
- •2.8. Индукционные реле
- •2.9. Реле тока на индукционном принципе
- •2.10. Индукционные реле тока серий рт-80 и рт-90
- •2.11. Индукционные реле направления мощности
- •2.12. Магнитоэлектрические реле
- •2.13. Измерительные органы на полупроводниковой элементной базе
- •2.14. Типовые функциональные элементы полупроводниковых ио
- •2.15. Аналоговые микросхемы, используемые для построения функциональных элементов ио
- •2.16. Основные схемы включения операционных усилителей, используемые в устройствах рз
- •2.17. Простейшие функциональные элементы, выполняемые на оу
- •2.18. Схемы сравнения двух электрических величин
- •2.19. Измерительные органы тока и напряжения на имс
- •2.20. Измерительные органы (реле) с двумя входными величинами на интегральных микросхемах
- •2.21. Элементы логической и исполнительной частей устройств рз
- •2.22. Органы логики на имс
- •Глава третья трансформаторы тока и схемы их соединения
- •3.1. Трансформаторы тока и их погрешности
- •3.2. Параметры, влияющие на уменьшение намагничивающего тока
- •3.3. Требования к точности трансформаторов тока, питающих рз
- •3.4. Выбор трансформаторов тока и допустимой вторичной нагрузки
- •3.5. Типовые схемы соединения обмоток трансформаторов тока
- •3.6. Нагрузка трансформаторов тока
- •3.7. Фильтры симметричных составляющих токов
- •3.8. Новые преобразователи первичного тока
- •Глава четвертая максимальная токовая защита
- •4.1. Принцип действия токовых зашит
- •4.2. Максимальная токовая зашита лэп
- •4.3. Схемы мтз на постоянном оперативном токе
- •4.4. Поведение мтз при двойных замыканиях на землю
- •4.5. Выбор тока срабатывания
- •4.6. Выдержки времени защиты
- •4.7. Максимальная токовая защита с пуском от реле напряжения
- •4.8. Максимальные токовые защиты на переменном оперативном токе
- •4.9. Максимальные токовые защиты с реле прямого действия
- •4.10. Общая оценка и область применения мтз
- •Глава пятая токовые отсечки
- •5.1. Принцип действия токовых отсечек
- •5.2. Схемы отсечек
- •5.3. Отсечки мгновенного действия на линиях с односторонним питанием
- •5.4. Неселективные отсечки
- •5.5. Отсечки на линиях с двусторонним питанием
- •5.6. Отсечки с выдержкой времени
- •Вопросы для самопроверки
- •Глава шестая трансформаторы напряжения и схемы их соединения
- •6.1. Основные сведения
- •6.2. Погрешности трансформатора напряжения
- •6.3. Схемы соединения трансформаторов напряжения
- •6.4. Повреждения в цепях тн и контроль за их исправностью
- •6.5. Емкостные делители напряжения
- •6.6. Фильтр напряжений обратной последовательности
- •Глава седьмая токовая направленная защита
- •7.1. Необходимость направленной защиты в сетях с двусторонним питанием
- •7.2. Функциональная схема и принцип действия токовой направленной защиты
- •7.3. Схемы включения реле направления мощности
- •7.4. Поведение реле направления мощности, включенных на токи неповрежденных фаз
- •7.5. Схемы направленной максимальной токовой защиты
- •7.6. Выбор уставок срабатывания
- •7.7. Мертвая зона
- •7.8. Токовые направленные отсечки
- •7.9. Оценка токовых направленных защит
- •Глава восьмая защита от коротких замыканий на землю в сети с глухозаземленной нейтралью
- •8.1. Общие сведения
- •8.2. Максимальная токовая защита нулевой последовательности
- •8.3. Токовые направленные защиты нулевой последовательности
- •8.4. Отсечки нулевой последовательности
- •8.5. Ступенчатая токовая защита нулевой последовательности
- •8.6. Выбор уставок токовых защит нулевой последовательности
- •8.7. Оценка и область применения токовых ступенчатых защит нп
- •Глава девятая защита от однофазных замыканий на землю в сети с изолированной нейтралью
- •9.1. Токи и напряжения при однофазном замыкании на землю
- •9.2. Основные требования к защите
- •9.3. Принципы выполнения защиты от однофазных замыканий на землю
- •9.4. Фильтры токов и напряжений нулевой последовательности
- •9.5. Токовая защита нулевой последовательности
- •9.6. Направленная защита
- •9.7. Защита, реагирующая на высшие гармоники тока в установившемся режиме
- •9.8. Защиты, реагирующие на токи переходного режима
- •Глава десятая дифференциальная защита линий
- •10.1. Принцип действия продольной дифференциальной защиты
- •10.2. Токи небаланса в дифференциальной защите
- •10.3. Общие принципы выполнения продольной дифференциальной защиты линии
- •10.4. Дифференциальные реле с торможением
- •10.5. Полная схема дифференциальной защиты линий
- •10.6. Устройство контроля исправности соединительных проводов
- •10.7. Продольная дифференциальная защита линий типа дзл
- •10.8. Оценка продольной дифференциальной защиты
- •10.9. Принцип действия и виды поперечных дифференциальных защит параллельных линий
- •10.10. Токовая поперечная дифференциальная зашита
- •10.11. Направленная поперечная дифференциальная защита
- •10.12. Оценка направленных поперечных дифференциальных защит
- •Глава одиннадцатая дистанционная защита
- •11.1. Назначение и принцип действия
- •11.2. Характеристики выдержки времени дистанционных защит
- •11.3. Принципы выполнения селективной защиты сети с помощью ступенчатой дистанционной защиты
- •11.4. Структурная схема дистанционной защиты со ступенчатой характеристикой
- •11.5. Схемы включения дистанционных и пусковых измерительных органов на напряжение и ток сети
- •11.6. Характеристики срабатывания реле сопротивления и их изображение на комплексной плоскости
- •11.7. Общие принципы выполнения реле сопротивления, используемых в дз в качестве измерительных органов, и требования к их конструкциям
- •11.8. Реле сопротивления на диодных схемах сравнения абсолютных значений двух электрических величин
- •11.9. Реле сопротивления на сравнении фаз двух электрических величин. Выполняемые на имс
- •11.10. Схемы трех основных функциональных элементов pc, построенных на сравнении фаз
- •11.11. Реле сопротивления со сложными характеристиками срабатывания, выполненные на имс
- •11.12. Пусковые органы дистанционных защит
- •11.13. Погрешность срабатывания pc, обусловленная током Iр
- •11.14. Искажение действия дистанционных органов
- •11.16. Выполнение схем дистанционных защит
- •11.17. Дистанционная защита типа шдэ-2801, выполняемая на имс
- •11.18. Выбор уставок дистанционной защиты
- •11.19. Оценка дистанционной защиты
- •Глава двенадцатая предотвращение неправильных действий защиты при качаниях
- •12.1. Характер изменения тока, напряжения и сопротивления на зажимах реле при качаниях
- •12.2. Поведение защиты при качаниях
- •12.3. Меры по предотвращению неправильных действий рз при качаниях
- •12.4. Блокирующее устройство, реагирующее на несимметрию токов или напряжений сети
- •12.5. Устройство блокировки при качаниях, реагирующее на скорость изменения тока, напряжения или сопротивления
- •12.6. Блокирующее устройство, реагирующее на скачкообразное приращение электрических величин (векторов тока прямой и обратной последовательностей)
- •Глава тринадцатая высокочастотные защиты
- •13.1. Назначение и виды высокочастотных защит
- •13.2. Принцип действия направленной защиты с вч-блокировкой
10.4. Дифференциальные реле с торможением
Реле с торможением, в отличие от простого дифференциального токового реле, выполняется таким образом, чтобы его ток срабатывания возрастал при увеличении тока внешнего КЗ согласно выражению
(10.7)
Принцип действия дифференциальной РЗ и реле с торможением (ДЗТ) поясняется схемами на рис.10.8. Реле с торможением имеет два элемента: рабочий Р и тормозной Т. Рабочий элемент включен через промежуточный трансформатор TLP по дифференциальной схеме, так же как и простое токовое реле в схемах, приведенных ранее. Ток, протекающий по рабочему элементу, называется рабочим Iр: при внешнем КЗ этот ток равен разности, а при КЗ в зоне – сумме вторичных токов IIв и IIIв. Тормозной элемент включается в рассечку соединительных проводов на ток IIв и IIIв. Ток, питающий тормозной элемент реле, препятствует срабатыванию реле и называется тормозным Iт. При внешнем КЗ или качаниях Iт = Iвн.к. Реле приходит в действие, если Iр > kтIт. Следовательно, рабочий ток, необходимый для срабатывания реле:
(10.8)
Коэффициент kт называется коэффициентом торможения, он характеризует степень загрубления реле под действием Iт. Обычно kт = 0,3 ÷ 0,6:
(10.9)
Характеристика срабатывания ДЗТ приведена на рис.10.8, в.
При внешнем КЗ Iр = IIв – IIIв = Iнб, Iт = Iк. При выполнении условия селективности (10.9) и Iр < kтIт реле не срабатывает. При КЗ в зоне РЗ Ip = IкIв + IкIIв. Так как при этом /р > /ст/т, реле срабатывает и отключает поврежденную ЛЭП.
10.5. Полная схема дифференциальной защиты линий
В
о
всех рассмотренных схемах подразумевалась
установка реле на трех фазах в тех
случаях, когда РЗ должна реагировать
на все виды КЗ. Для выполнения таких
схем необходимо шесть дифференциальных
реле и не менее четырех соединительных
проводов. Для уменьшения числа реле и
соединительных проводов реле включаются
через фильтры симметричных составляющих
или суммирующие трансформаторы, как
показано на принципиальной схеме
(рис.10.9).
Помимо уже рассмотренных элементов в этой схеме предусмотрены разделительные (изолирующие) трансформаторы ТI, с помощью которых цепь соединительного кабеля АВ отделяется от цепей реле. Такое разделение исключает появление в цепях реле высоких напряжений, наведенных в жилах кабеля при протекании токов КЗ по защищаемой ЛЭП или возникающих в них по любым другим причинам.
На практике получили распространение РЗ с комбинированными фильтрами прямой и обратной последовательностей или прямой и нулевой последовательностей. Ток (или напряжение) на выходе таких фильтров пропорционален I1 + kI2 или I1+ kI0. Составляющая прямой последовательности I1 имеется при всех видах КЗ. Слагающая kI2 возникает при несимметричных повреждениях (двух- и однофазных) и позволяет повысить чувствительность РЗ, увеличивая ток в реле. То же самое достигается с помощью слагающей kI0, но только при КЗ на землю.
10.6. Устройство контроля исправности соединительных проводов
Повреждения проводов. Повреждение соединительных проводов может вызвать неправильную работу дифференциальной РЗ. Возможны обрывы проводов, КЗ между ними и замыкания на землю одного из проводов.
П
ри
обрыве соединительного провода
(рис.10.10, а)
весь ток, поступающий от ТТ, замыкается
через рабочие обмотки дифференциальных
реле. Ток в тормозной Т
и
рабочей Р
обмотках реле становится одинаковым,
вследствие чего реле может сработать
при нормальной нагрузке или внешнем
КЗ. Замыкание между соединительными
проводами (рис.10.10, б)
шунтирует
рабочие обмотки реле, благодаря чему
РЗ может не подействовать и отказать в
работе при КЗ в зоне. Замыкание на землю
не нарушает токораспределения и не
угрожает поэтому непосредственной
опасностью неправильного действия или
отказа РЗ. Однако если в жилах
соединительного кабеля появляется ЭДС,
наведенная токами вблизи расположенных
ЛЭП, то создаются условия для ложной
работы РЗ в режиме нагрузки или внешнего
КЗ.
Устройство контроля. Для повышения надежности РЗ ее снабжают устройствами, контролирующими исправное состояние соединительных проводов. Устройство контроля может автоматически выводить РЗ из действия, разрывая ее цепь отключения при повреждении соединительных проводов, или подавать сигнал о неисправности.
Получило распространение устройство контроля, основанное на наложении на рабочий ток, протекающий в соединительных проводах РЗ, непрерывно циркулирующего контрольного постоянного тока. Принцип выполнения устройства показан на рис.10.10, в. К соединительным проводам А и В подводится контрольное напряжение от выпрямителя VS1, который питается от ТСН подстанции. Для создания контура контрольного тока вторичные обмотки изолирующих трансформаторов TAL на обоих концах ЛЭП, состоящие из двух секций, соединяются через конденсатор СЗ, который пропускает переменный ток, но запирает путь постоянному току контроля. Ток контроля Iк, поступающий от выпрямителя VS1, замыкается через обмотку реле КL1, провод А, реле KL2, провод В и возвращается в выпрямитель, как показано стрелками на рис.10.10, в. Ток контроля не трансформируется в первичные обмотки трансформаторов TAL и поэтому не влияет на работу РЗ. Под действием этого тока якоря реле КL1 и KL2 подтянуты.
При обрыве соединительного провода ток контроля исчезает, и реле срабатывают, подавая сигнал и разрывая оперативную цепь РЗ.
При замыкании между проводами А и В обмотка реле KL2 шунтируется. Ток Iк в реле KL2 исчезает, и реле срабатывает, подавая сигнал о неисправности и выключая РЗ на своем конце ЛЭП. Такое действие контроля допустимо, поскольку при возникновении КЗ между соединительными проводами автоматическое отключение ЛЭП не требуется. Обычно нормальное значение тока Iк = 5 ÷ 6 мА, а напряжение Uк = 80 В.
Для сигнализации о замыкании на землю в соединительных проводах предусматривается второй выпрямитель VS2. Он подключается одним полюсом к соединительным проводам, а вторым – к земле, через заземляющий дроссель L.
При отсутствии замыкания на землю цепь реле KL3 разомкнута и оно не работает. В случае нарушения изоляции относительно земли одного из проводов под действием напряжения U2 возникает искусственный ток замыкания на землю Iз, который проходит через реле KL3, место повреждения и возвращается в выпрямитель VS2 через землю и дроссель L. Реле KL3 срабатывает и дает сигнал. В качестве реле KL1-KL3 используются поляризованные реле типа РП-7.
Соединительные провода. Связь между комплектами РЗ, расположенными по концам защищаемой ЛЭП, осуществляется с помощью бронированного кабеля, прокладываемого по трассе, обеспечивающей его сохранность. В целях удешевления обычно применяется многожильный кордельный телефонный кабель типов ТЗБ, ТБ и ТЗСБ, используемый одновременно для телефонной связи и телемеханики. Для обеспечения правильной работы РЗ жилы кабеля должны иметь возможно меньшее сопротивление и небольшую емкость. Первое необходимо для ограничения Iнб, обусловливаемых влиянием сопротивления соединительных проводов (см. §10.4), а второе – для повышения чувствительности РЗ, так как емкость между жилами и на землю шунтирует рабочую обмотку дифференциального реле и уменьшает поступающий в нее ток при КЗ на защищаемой ЛЭП (рис.10.10, г).