Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Н. В. Чернобровов в. А. Семенов релейная защита...doc
Скачиваний:
5
Добавлен:
01.05.2025
Размер:
5.63 Mб
Скачать

7.9. Оценка токовых направленных защит

Принцип действия НТЗ прост и надежен и позволяет обеспечить селективную РЗ сетей с двусторонним питанием. Сочетание направленных отсечек с НТЗ дает возможность получить ступенчатую РЗ, во многих случаях обеспечивающую достаточную быстроту отключения КЗ и чувствительность.

К недостаткам ее следует отнести: большие выдержки времени, особенно вблизи источников питания; недостаточную чувствительность в сетях с большими нагрузками и небольшими относительно их кратностями тока КЗ; мертвую зону при трехфазных КЗ; возможность неправильного выбора направления при нарушении цепи напряжения, питающей РHМ.

Максимальная направленная РЗ широко применяется в качестве основной РЗ сетей напряжением до 35 кВ с двусторонним питанием и в простых кольцевых сетях с одной точкой питания.

В сетях 110 и 220 кВ НТЗ применяется в основном как резервная, а иногда, в сочетании с отсечкой, как основная, если она удовлетворяет требованиям по чувствительности и быстродействию.

Вопросы для самопроверки

1. Назначение дополнительной маркировки выводов ("*") у реле направления мощности?

2. Где расположена и чем обусловлена "мертвая зона" реле направления мощности?

3. Какие схемы соединения обмоток трансформаторов тока и напряжения использует комплект направленной защиты от междуфазных КЗ?

4. Какой тип реле мощности следует использовать в направленной защите от междуфазных КЗ?

5. Почему токовая направленная защита не может применяться в сложных сетях с несколькими точками питания?

Глава восьмая защита от коротких замыканий на землю в сети с глухозаземленной нейтралью

8.1. Общие сведения

Д ля защиты ЛЭП от КЗ на землю (одно- и двухфазных) применяется РЗ, реагирующая на токи и мощности нулевой последовательности (НП). Эта РЗ осуществляется более просто и имеет ряд преимуществ по сравнению с рассмотренной выше МТЗ, реагирующей на полные токи фаз. Защиты НП выполняются в виде МТЗ НП и отсечек как простых, так и направленных.

Векторные диаграммы токов и напряжений при однофазном КЗ приведены на рис.1.6. При однофазном КЗ ток НП в месте повреждения Iок равен 1/3 тока КЗ в поврежденной фазе и совпадает с ним по фазе, а напряжение Uок в точке КЗ равно 1/3 геометрической суммы напряжений неповрежденных фаз.

Под действием напряжения НП, возникающего в месте повреждения (точка К на рис.8.1), возникают токи Iок, которые замыкаются по контуру фаза-земля через место повреждения (точку К) и заземленные нейтрали. Таким образом, при КЗ на землю появление токов Iо, возможно только в сети, где имеются трансформаторы с заземленными нейтралями. При нескольких заземленных нейтралях ток НП от места повреждения разветвляется между ними обратно пропорционально сопротивлениям ветвей. На рис.8.2 показаны характерные случаи распределения токов НП в схемах сети. Направление токов, проходящих к месту КЗ, принято за положительное. Если заземлена нулевая точка трансформатора только с одной стороны ЛЭП, то при КЗ на землю на ней токи НП проходят только на участке между местом повреждения и заземленной нейтралью. Если же заземлены нейтрали трансформаторов с двух сторон рассматриваемого участка (рис.8.2, б), токи НП проходят с обеих сторон от места КЗ.

Это позволяет сделать вывод, что распределение токов НП в сети определяется расположением не генераторов, а заземленных нейтралей.

Если трансформатор имеет соединение обмоток звезда-треугольник, то замыкание на землю на стороне треугольника не вызывает токов НП на стороне звезды. Поэтому РЗ, установленные в сети звезды, не действуют при замыканиях на землю в сети треугольника.

Если же сети различных напряжений связаны трансформатором, имеющим соединение обмоток звезда-звезда, с заземленными нулевыми точками обеих обмоток (рис.8.2, в), то КЗ на землю в сети одной звезды вызывает появление токов НП в сети второй звезды.

При наличии автотрансформатора AT, связывающего сети двух напряжений (рис. 8.2, г), КЗ на землю в сети одного напряжения вызывает появление токов НП в сети другого напряжения, так же как и в схеме на рис.8.2, в.

Из схемы замещения НП, приведенной на рис.8.3, б, следует, что напряжение UоР в какой-либо точке сети, например в точке Р – месте установки РЗ, меньше напряжения UоК в месте КЗ (точке К) на значение падения напряжения в сопротивлении Z0(K–Р) между точками К и Р, т.е.

(8.1)

Таким образом, чем дальше отстоит точка Р от места повреждения К, тем меньше напряжение Uо.

В месте заземленных нейтралей трансформаторов (точке Н) напряжение UоН = 0, так как точка Н непосредственно связана с землей. Зависимость UоР = f(l(Kp)) имеет линейный характер и представлена на рис.8.3, в, где для сравнения показано изменение напряжения поврежденной фазы UА в зависимости от расстояния до точки К. Учитывая, что в точке Н напряжение UоН равно нулю, напряжение Uо в точке Р можно определять как падение напряжения от точки Н до точки Р в сопротивлении Хо(Н–Р) (сопротивлением R0 пренебрегаем, так как в сети 110 кВ и выше оно мало):

(8.1а)