
- •Глава первая общие понятия о релейной защите
- •1.1. Назначение релейной защиты
- •1.2. Повреждения в электроустановках
- •1.3. Векторные диаграммы токов и напряжений при кз
- •1.4. Ненормальные режимы
- •1.5. Основные требования, предъявляемые к устройствам релейной защиты
- •1.6. Структурные части и основные элементы рз
- •1.7. Виды устройств рз
- •1.8. Изображение схем рз на чертежах
- •1.9. Источники и схемы оперативного тока
- •Глава вторая принципы построения измерительных и логических органов релейной защиты
- •2.1. Общие принципы конструктивного исполнения реле
- •2.2. Электромеханические реле
- •2.3. Конструкции реле, выполняемых на электромагнитном принципе
- •2.4. Промежуточные реле (логические элементы)
- •2.5. Указательные реле
- •2.6. Реле времени
- •2.7. Поляризованные реле
- •2.8. Индукционные реле
- •2.9. Реле тока на индукционном принципе
- •2.10. Индукционные реле тока серий рт-80 и рт-90
- •2.11. Индукционные реле направления мощности
- •2.12. Магнитоэлектрические реле
- •2.13. Измерительные органы на полупроводниковой элементной базе
- •2.14. Типовые функциональные элементы полупроводниковых ио
- •2.15. Аналоговые микросхемы, используемые для построения функциональных элементов ио
- •2.16. Основные схемы включения операционных усилителей, используемые в устройствах рз
- •2.17. Простейшие функциональные элементы, выполняемые на оу
- •2.18. Схемы сравнения двух электрических величин
- •2.19. Измерительные органы тока и напряжения на имс
- •2.20. Измерительные органы (реле) с двумя входными величинами на интегральных микросхемах
- •2.21. Элементы логической и исполнительной частей устройств рз
- •2.22. Органы логики на имс
- •Глава третья трансформаторы тока и схемы их соединения
- •3.1. Трансформаторы тока и их погрешности
- •3.2. Параметры, влияющие на уменьшение намагничивающего тока
- •3.3. Требования к точности трансформаторов тока, питающих рз
- •3.4. Выбор трансформаторов тока и допустимой вторичной нагрузки
- •3.5. Типовые схемы соединения обмоток трансформаторов тока
- •3.6. Нагрузка трансформаторов тока
- •3.7. Фильтры симметричных составляющих токов
- •3.8. Новые преобразователи первичного тока
- •Глава четвертая максимальная токовая защита
- •4.1. Принцип действия токовых зашит
- •4.2. Максимальная токовая зашита лэп
- •4.3. Схемы мтз на постоянном оперативном токе
- •4.4. Поведение мтз при двойных замыканиях на землю
- •4.5. Выбор тока срабатывания
- •4.6. Выдержки времени защиты
- •4.7. Максимальная токовая защита с пуском от реле напряжения
- •4.8. Максимальные токовые защиты на переменном оперативном токе
- •4.9. Максимальные токовые защиты с реле прямого действия
- •4.10. Общая оценка и область применения мтз
- •Глава пятая токовые отсечки
- •5.1. Принцип действия токовых отсечек
- •5.2. Схемы отсечек
- •5.3. Отсечки мгновенного действия на линиях с односторонним питанием
- •5.4. Неселективные отсечки
- •5.5. Отсечки на линиях с двусторонним питанием
- •5.6. Отсечки с выдержкой времени
- •Вопросы для самопроверки
- •Глава шестая трансформаторы напряжения и схемы их соединения
- •6.1. Основные сведения
- •6.2. Погрешности трансформатора напряжения
- •6.3. Схемы соединения трансформаторов напряжения
- •6.4. Повреждения в цепях тн и контроль за их исправностью
- •6.5. Емкостные делители напряжения
- •6.6. Фильтр напряжений обратной последовательности
- •Глава седьмая токовая направленная защита
- •7.1. Необходимость направленной защиты в сетях с двусторонним питанием
- •7.2. Функциональная схема и принцип действия токовой направленной защиты
- •7.3. Схемы включения реле направления мощности
- •7.4. Поведение реле направления мощности, включенных на токи неповрежденных фаз
- •7.5. Схемы направленной максимальной токовой защиты
- •7.6. Выбор уставок срабатывания
- •7.7. Мертвая зона
- •7.8. Токовые направленные отсечки
- •7.9. Оценка токовых направленных защит
- •Глава восьмая защита от коротких замыканий на землю в сети с глухозаземленной нейтралью
- •8.1. Общие сведения
- •8.2. Максимальная токовая защита нулевой последовательности
- •8.3. Токовые направленные защиты нулевой последовательности
- •8.4. Отсечки нулевой последовательности
- •8.5. Ступенчатая токовая защита нулевой последовательности
- •8.6. Выбор уставок токовых защит нулевой последовательности
- •8.7. Оценка и область применения токовых ступенчатых защит нп
- •Глава девятая защита от однофазных замыканий на землю в сети с изолированной нейтралью
- •9.1. Токи и напряжения при однофазном замыкании на землю
- •9.2. Основные требования к защите
- •9.3. Принципы выполнения защиты от однофазных замыканий на землю
- •9.4. Фильтры токов и напряжений нулевой последовательности
- •9.5. Токовая защита нулевой последовательности
- •9.6. Направленная защита
- •9.7. Защита, реагирующая на высшие гармоники тока в установившемся режиме
- •9.8. Защиты, реагирующие на токи переходного режима
- •Глава десятая дифференциальная защита линий
- •10.1. Принцип действия продольной дифференциальной защиты
- •10.2. Токи небаланса в дифференциальной защите
- •10.3. Общие принципы выполнения продольной дифференциальной защиты линии
- •10.4. Дифференциальные реле с торможением
- •10.5. Полная схема дифференциальной защиты линий
- •10.6. Устройство контроля исправности соединительных проводов
- •10.7. Продольная дифференциальная защита линий типа дзл
- •10.8. Оценка продольной дифференциальной защиты
- •10.9. Принцип действия и виды поперечных дифференциальных защит параллельных линий
- •10.10. Токовая поперечная дифференциальная зашита
- •10.11. Направленная поперечная дифференциальная защита
- •10.12. Оценка направленных поперечных дифференциальных защит
- •Глава одиннадцатая дистанционная защита
- •11.1. Назначение и принцип действия
- •11.2. Характеристики выдержки времени дистанционных защит
- •11.3. Принципы выполнения селективной защиты сети с помощью ступенчатой дистанционной защиты
- •11.4. Структурная схема дистанционной защиты со ступенчатой характеристикой
- •11.5. Схемы включения дистанционных и пусковых измерительных органов на напряжение и ток сети
- •11.6. Характеристики срабатывания реле сопротивления и их изображение на комплексной плоскости
- •11.7. Общие принципы выполнения реле сопротивления, используемых в дз в качестве измерительных органов, и требования к их конструкциям
- •11.8. Реле сопротивления на диодных схемах сравнения абсолютных значений двух электрических величин
- •11.9. Реле сопротивления на сравнении фаз двух электрических величин. Выполняемые на имс
- •11.10. Схемы трех основных функциональных элементов pc, построенных на сравнении фаз
- •11.11. Реле сопротивления со сложными характеристиками срабатывания, выполненные на имс
- •11.12. Пусковые органы дистанционных защит
- •11.13. Погрешность срабатывания pc, обусловленная током Iр
- •11.14. Искажение действия дистанционных органов
- •11.16. Выполнение схем дистанционных защит
- •11.17. Дистанционная защита типа шдэ-2801, выполняемая на имс
- •11.18. Выбор уставок дистанционной защиты
- •11.19. Оценка дистанционной защиты
- •Глава двенадцатая предотвращение неправильных действий защиты при качаниях
- •12.1. Характер изменения тока, напряжения и сопротивления на зажимах реле при качаниях
- •12.2. Поведение защиты при качаниях
- •12.3. Меры по предотвращению неправильных действий рз при качаниях
- •12.4. Блокирующее устройство, реагирующее на несимметрию токов или напряжений сети
- •12.5. Устройство блокировки при качаниях, реагирующее на скорость изменения тока, напряжения или сопротивления
- •12.6. Блокирующее устройство, реагирующее на скачкообразное приращение электрических величин (векторов тока прямой и обратной последовательностей)
- •Глава тринадцатая высокочастотные защиты
- •13.1. Назначение и виды высокочастотных защит
- •13.2. Принцип действия направленной защиты с вч-блокировкой
7.6. Выбор уставок срабатывания
Ток срабатывания пусковых реле. Основным условием при выборе Iс.з НТЗ является отстройка от токов нагрузки с учетом самозапуска в послеаварийном режиме:
(7.3)
Максимальное значение IH max следует определять, исходя из наиболее тяжелых, но возможных в эксплуатации режимов. В кольцевых сетях и радиальных с двусторонним питанием (рис.7.1, а, б) максимальные нагрузки на ЛЭП возникают при размыкании сети.
Ток срабатывания НТЗ должен быть также отстроен от токов, возникающих в неповрежденных фазах при КЗ на землю в сети с глухозаземленной нейтралью:
(7.4)
где Iн.ф – полный ток в неповрежденной фазе. Для НТЗ, устанавливаемой в сети с глухозаземленной нейтралью, предназначенной для действия и при КЗ на землю, Iн.ф = Iн + kIок (см. §7.4), ток kIок определяется специальным расчетом; kотс – коэффициент надежности, в зависимости от точности оценки значения Iн.ф принимается равным 1,2-1,5 для РЗ, устанавливаемых в сети с изолированной нейтралью, ток Iн.ф = Iн, проходящий по неповрежденной фазе при двухфазном КЗ. В этом случае Iс.з, выбранный по (7.3), удовлетворяет условию (7.4).
За окончательное принимается большее значение Iс.з, полученное по выражениям (7.3) и (7.4).
Для РЗ в сети с малым током замыкания на землю (где Iн.ф = Iн) и для РЗ в сети с глухозаземленной нейтралью, блокируемых при КЗ на землю, ток срабатывания пусковых реле выбирается только по первому условию, т.е. по (7.3).
Для обеспечения селективности чувствительность РЗ, действующих в одном направлении, необходимо согласовать так, чтобы токи срабатывания нарастали при обходе РЗ против направления их действия.
В показанной на рис.7.1, б сети токи срабатывания НТЗ должны удовлетворять условиям
(7.5)
Разница в значениях тока срабатывания двух смежных РЗ обычно принимается примерно равной 10%.
В схемах с блокировкой по напряжению напряжение срабатывания реле минимального напряжения выбирается по (4.14). Чувствительность реле тока при КЗ проверяется, так же как и чувствительность МТЗ, по (4.6).
Выдержка времени защиты выбирается из условия селективности. Для этой цели согласуются выдержки времени РЗ, действующих в одном и том же направлении, которые по этому признаку делятся на две группы:
(7.6)
О
бозначая
через Δt
ступень
времени между двумя смежными РЗ, покажем
графически согласование времени действия
РЗ (рис.7.11).
Рассматривая диаграмму выдержек времени на рис.7.11, можно заметить, что направленность действия требуется не для всех РЗ. Например, выдержка времени РЗ А3 больше, чем
РЗ Б2; следовательно, селективность РЗ А3 при направлении мощности КЗ к шинам может быть обеспечена без OHM. To же самое относится и к РЗ Б6, отсюда вытекает общее правило, что OHM должен устанавливаться на тех РЗ, у которых при направлении мощности к шинам нельзя обеспечить селективность посредством выдержки времени. Для выяснения, в каких именно точках сети можно установить ненаправленную МТЗ, нужно сначала выбрать выдержки времени по встречно-ступенчатому принципу.
Защита должна согласовываться по времени не только с РЗ, установленными на транзитных ЛЭП кольцевой или радиальной сети, но также с РЗ других присоединений, отходящих от шин противоположной подстанции. Так, например, РЗ 4 на рис.7.1, б должна иметь выдержку времени, согласованную с РЗ 6 и 8. Выдержка времени t4 выбирается на ступень выше той РЗ, у которой время действия больше. Если t8 > t6, то t4 = t8 + Δt.