
- •Глава первая общие понятия о релейной защите
- •1.1. Назначение релейной защиты
- •1.2. Повреждения в электроустановках
- •1.3. Векторные диаграммы токов и напряжений при кз
- •1.4. Ненормальные режимы
- •1.5. Основные требования, предъявляемые к устройствам релейной защиты
- •1.6. Структурные части и основные элементы рз
- •1.7. Виды устройств рз
- •1.8. Изображение схем рз на чертежах
- •1.9. Источники и схемы оперативного тока
- •Глава вторая принципы построения измерительных и логических органов релейной защиты
- •2.1. Общие принципы конструктивного исполнения реле
- •2.2. Электромеханические реле
- •2.3. Конструкции реле, выполняемых на электромагнитном принципе
- •2.4. Промежуточные реле (логические элементы)
- •2.5. Указательные реле
- •2.6. Реле времени
- •2.7. Поляризованные реле
- •2.8. Индукционные реле
- •2.9. Реле тока на индукционном принципе
- •2.10. Индукционные реле тока серий рт-80 и рт-90
- •2.11. Индукционные реле направления мощности
- •2.12. Магнитоэлектрические реле
- •2.13. Измерительные органы на полупроводниковой элементной базе
- •2.14. Типовые функциональные элементы полупроводниковых ио
- •2.15. Аналоговые микросхемы, используемые для построения функциональных элементов ио
- •2.16. Основные схемы включения операционных усилителей, используемые в устройствах рз
- •2.17. Простейшие функциональные элементы, выполняемые на оу
- •2.18. Схемы сравнения двух электрических величин
- •2.19. Измерительные органы тока и напряжения на имс
- •2.20. Измерительные органы (реле) с двумя входными величинами на интегральных микросхемах
- •2.21. Элементы логической и исполнительной частей устройств рз
- •2.22. Органы логики на имс
- •Глава третья трансформаторы тока и схемы их соединения
- •3.1. Трансформаторы тока и их погрешности
- •3.2. Параметры, влияющие на уменьшение намагничивающего тока
- •3.3. Требования к точности трансформаторов тока, питающих рз
- •3.4. Выбор трансформаторов тока и допустимой вторичной нагрузки
- •3.5. Типовые схемы соединения обмоток трансформаторов тока
- •3.6. Нагрузка трансформаторов тока
- •3.7. Фильтры симметричных составляющих токов
- •3.8. Новые преобразователи первичного тока
- •Глава четвертая максимальная токовая защита
- •4.1. Принцип действия токовых зашит
- •4.2. Максимальная токовая зашита лэп
- •4.3. Схемы мтз на постоянном оперативном токе
- •4.4. Поведение мтз при двойных замыканиях на землю
- •4.5. Выбор тока срабатывания
- •4.6. Выдержки времени защиты
- •4.7. Максимальная токовая защита с пуском от реле напряжения
- •4.8. Максимальные токовые защиты на переменном оперативном токе
- •4.9. Максимальные токовые защиты с реле прямого действия
- •4.10. Общая оценка и область применения мтз
- •Глава пятая токовые отсечки
- •5.1. Принцип действия токовых отсечек
- •5.2. Схемы отсечек
- •5.3. Отсечки мгновенного действия на линиях с односторонним питанием
- •5.4. Неселективные отсечки
- •5.5. Отсечки на линиях с двусторонним питанием
- •5.6. Отсечки с выдержкой времени
- •Вопросы для самопроверки
- •Глава шестая трансформаторы напряжения и схемы их соединения
- •6.1. Основные сведения
- •6.2. Погрешности трансформатора напряжения
- •6.3. Схемы соединения трансформаторов напряжения
- •6.4. Повреждения в цепях тн и контроль за их исправностью
- •6.5. Емкостные делители напряжения
- •6.6. Фильтр напряжений обратной последовательности
- •Глава седьмая токовая направленная защита
- •7.1. Необходимость направленной защиты в сетях с двусторонним питанием
- •7.2. Функциональная схема и принцип действия токовой направленной защиты
- •7.3. Схемы включения реле направления мощности
- •7.4. Поведение реле направления мощности, включенных на токи неповрежденных фаз
- •7.5. Схемы направленной максимальной токовой защиты
- •7.6. Выбор уставок срабатывания
- •7.7. Мертвая зона
- •7.8. Токовые направленные отсечки
- •7.9. Оценка токовых направленных защит
- •Глава восьмая защита от коротких замыканий на землю в сети с глухозаземленной нейтралью
- •8.1. Общие сведения
- •8.2. Максимальная токовая защита нулевой последовательности
- •8.3. Токовые направленные защиты нулевой последовательности
- •8.4. Отсечки нулевой последовательности
- •8.5. Ступенчатая токовая защита нулевой последовательности
- •8.6. Выбор уставок токовых защит нулевой последовательности
- •8.7. Оценка и область применения токовых ступенчатых защит нп
- •Глава девятая защита от однофазных замыканий на землю в сети с изолированной нейтралью
- •9.1. Токи и напряжения при однофазном замыкании на землю
- •9.2. Основные требования к защите
- •9.3. Принципы выполнения защиты от однофазных замыканий на землю
- •9.4. Фильтры токов и напряжений нулевой последовательности
- •9.5. Токовая защита нулевой последовательности
- •9.6. Направленная защита
- •9.7. Защита, реагирующая на высшие гармоники тока в установившемся режиме
- •9.8. Защиты, реагирующие на токи переходного режима
- •Глава десятая дифференциальная защита линий
- •10.1. Принцип действия продольной дифференциальной защиты
- •10.2. Токи небаланса в дифференциальной защите
- •10.3. Общие принципы выполнения продольной дифференциальной защиты линии
- •10.4. Дифференциальные реле с торможением
- •10.5. Полная схема дифференциальной защиты линий
- •10.6. Устройство контроля исправности соединительных проводов
- •10.7. Продольная дифференциальная защита линий типа дзл
- •10.8. Оценка продольной дифференциальной защиты
- •10.9. Принцип действия и виды поперечных дифференциальных защит параллельных линий
- •10.10. Токовая поперечная дифференциальная зашита
- •10.11. Направленная поперечная дифференциальная защита
- •10.12. Оценка направленных поперечных дифференциальных защит
- •Глава одиннадцатая дистанционная защита
- •11.1. Назначение и принцип действия
- •11.2. Характеристики выдержки времени дистанционных защит
- •11.3. Принципы выполнения селективной защиты сети с помощью ступенчатой дистанционной защиты
- •11.4. Структурная схема дистанционной защиты со ступенчатой характеристикой
- •11.5. Схемы включения дистанционных и пусковых измерительных органов на напряжение и ток сети
- •11.6. Характеристики срабатывания реле сопротивления и их изображение на комплексной плоскости
- •11.7. Общие принципы выполнения реле сопротивления, используемых в дз в качестве измерительных органов, и требования к их конструкциям
- •11.8. Реле сопротивления на диодных схемах сравнения абсолютных значений двух электрических величин
- •11.9. Реле сопротивления на сравнении фаз двух электрических величин. Выполняемые на имс
- •11.10. Схемы трех основных функциональных элементов pc, построенных на сравнении фаз
- •11.11. Реле сопротивления со сложными характеристиками срабатывания, выполненные на имс
- •11.12. Пусковые органы дистанционных защит
- •11.13. Погрешность срабатывания pc, обусловленная током Iр
- •11.14. Искажение действия дистанционных органов
- •11.16. Выполнение схем дистанционных защит
- •11.17. Дистанционная защита типа шдэ-2801, выполняемая на имс
- •11.18. Выбор уставок дистанционной защиты
- •11.19. Оценка дистанционной защиты
- •Глава двенадцатая предотвращение неправильных действий защиты при качаниях
- •12.1. Характер изменения тока, напряжения и сопротивления на зажимах реле при качаниях
- •12.2. Поведение защиты при качаниях
- •12.3. Меры по предотвращению неправильных действий рз при качаниях
- •12.4. Блокирующее устройство, реагирующее на несимметрию токов или напряжений сети
- •12.5. Устройство блокировки при качаниях, реагирующее на скорость изменения тока, напряжения или сопротивления
- •12.6. Блокирующее устройство, реагирующее на скачкообразное приращение электрических величин (векторов тока прямой и обратной последовательностей)
- •Глава тринадцатая высокочастотные защиты
- •13.1. Назначение и виды высокочастотных защит
- •13.2. Принцип действия направленной защиты с вч-блокировкой
7.4. Поведение реле направления мощности, включенных на токи неповрежденных фаз
В поврежденных фазах поведение РНМ определяется током и мощностью КЗ, проходящим по этим фазам, направление которых однозначно зависит от места повреждения. В иных условиях находятся реле, включенные на токи неповрежденных фаз. Эти токи и соответствующие мощности могут вызвать ложную работу РНМ, разрешая отключить неповрежденную ЛЭП при внешних КЗ.
Действительно, при двухфазных КЗ (рис.7.7) по неповрежденной фазе проходит ток нагрузки Iн. В схеме на рис.7.7 Iн на W1 направлен от шин ПС2, и РНМ на неповрежденной фазе С разрешит НТЗ2 отключить W1.
При КЗ на землю (одно- и двухфазных) на линии в сети с глухозаземленной нейтралью, кроме токов нагрузки, по неповрежденным фазам проходит часть полного тока КЗ, уходящего в землю в месте повреждения и возвращающегося к месту КЗ.
Т
аким
образом, при КЗ на землю полный ток в
неповрежденных фазах равен геометрической
сумме токов нагрузки и части полного
тока КЗ:
(7.2)
где k – коэффициент, учитывающий долю тока 3I0.к, замыкающегося по неповрежденной фазе при КЗ на землю.
7.5. Схемы направленной максимальной токовой защиты
В сети с глухозаземленной нейтралью НТЗ, предназначенная для действия только при междуфазных КЗ, выполняется по двухфазной схеме (рис.7.8, а, б). При этом для отключения КЗ на землю предусматривается РЗ, реагирующая на токи НП (см. §8.3).
В
тех случаях, когда токи в неповрежденных
фазах имеют большие значения и отстройка
от них пусковых токовых реле недопустима
по условию чувствительности, схема
дополняется блокировкой, выводящей НТЗ
из действия при КЗ на землю (рис.7.8).
Блокировка осуществляется посредством
реле тока КА0,
включенного
в нулевой провод ТТ, соединенных по
схеме полной звезды. В схемах, выполненных
на электромеханических реле (рис.7.8, в),
при КЗ на землю реле КА0
срабатывает
и снимает плюс, подводимый к НТЗ от
источника оперативного тока. Пофазный
пуск в таких схемах сохраняется. В схемах
на полупроводниковых элементах реле
КА0
подает
сигнал, блокирующий действие защиты.
Схема с дополнительным пуском по напряжению применяется, как и у МТЗ (см. §4.7), при больших токах нагрузки, требующих увеличения тока срабатывания пусковых токовых реле до значения, при котором не обеспечивается необходимая чувствительность НТЗ во время КЗ. Пусковой орган напряжения блокирует действие НТЗ в режиме максимальной нагрузки. Благодаря этому орган тока отстраивается от нормальной нагрузки, что повышает его чувствительность.
На рис.7.9 приведена структурная схема НТЗ с двумя пусковыми органами для одной фазы (для упрощения чертежа).
Она
представляет собой схему НТЗ с токовым
пуском (см. рис.7.2 и 7.4), дополненную пуском
по напряжению (KV).
При
этом на логический элемент И
приходят
три сигнала от реле тока КА,
направления
мощности KW
и
пускового устройства напряжения KV.
При
КЗ в зоне РЗ д
олжны
сработать реле КА,
KW,
KV.
Релейная
защита срабатывает с установленной
выдержкой времени t3
на
элементе времени КТ.
На рис.7.10 представлена схема НТЗ на переменном оперативном токе, выполненная с дешунтированием электромагнита отключения YAT. Схема работает так же, как аналогичная схема на рис.4.20, и отличается лишь наличием реле KW7 и KW8.
В
о
всех рассмотренных схемах РНМ могут
неправильно определять направление
мощности при неисправностях в цепях
напряжения. В результате этого НТЗ может
неправильно подействовать при КЗ. Для
своевременного выявления неисправностей
в цепях напряжения необходимо
предусматривать устройство контроля
их исправности (см. §6.4).