
- •Глава первая общие понятия о релейной защите
- •1.1. Назначение релейной защиты
- •1.2. Повреждения в электроустановках
- •1.3. Векторные диаграммы токов и напряжений при кз
- •1.4. Ненормальные режимы
- •1.5. Основные требования, предъявляемые к устройствам релейной защиты
- •1.6. Структурные части и основные элементы рз
- •1.7. Виды устройств рз
- •1.8. Изображение схем рз на чертежах
- •1.9. Источники и схемы оперативного тока
- •Глава вторая принципы построения измерительных и логических органов релейной защиты
- •2.1. Общие принципы конструктивного исполнения реле
- •2.2. Электромеханические реле
- •2.3. Конструкции реле, выполняемых на электромагнитном принципе
- •2.4. Промежуточные реле (логические элементы)
- •2.5. Указательные реле
- •2.6. Реле времени
- •2.7. Поляризованные реле
- •2.8. Индукционные реле
- •2.9. Реле тока на индукционном принципе
- •2.10. Индукционные реле тока серий рт-80 и рт-90
- •2.11. Индукционные реле направления мощности
- •2.12. Магнитоэлектрические реле
- •2.13. Измерительные органы на полупроводниковой элементной базе
- •2.14. Типовые функциональные элементы полупроводниковых ио
- •2.15. Аналоговые микросхемы, используемые для построения функциональных элементов ио
- •2.16. Основные схемы включения операционных усилителей, используемые в устройствах рз
- •2.17. Простейшие функциональные элементы, выполняемые на оу
- •2.18. Схемы сравнения двух электрических величин
- •2.19. Измерительные органы тока и напряжения на имс
- •2.20. Измерительные органы (реле) с двумя входными величинами на интегральных микросхемах
- •2.21. Элементы логической и исполнительной частей устройств рз
- •2.22. Органы логики на имс
- •Глава третья трансформаторы тока и схемы их соединения
- •3.1. Трансформаторы тока и их погрешности
- •3.2. Параметры, влияющие на уменьшение намагничивающего тока
- •3.3. Требования к точности трансформаторов тока, питающих рз
- •3.4. Выбор трансформаторов тока и допустимой вторичной нагрузки
- •3.5. Типовые схемы соединения обмоток трансформаторов тока
- •3.6. Нагрузка трансформаторов тока
- •3.7. Фильтры симметричных составляющих токов
- •3.8. Новые преобразователи первичного тока
- •Глава четвертая максимальная токовая защита
- •4.1. Принцип действия токовых зашит
- •4.2. Максимальная токовая зашита лэп
- •4.3. Схемы мтз на постоянном оперативном токе
- •4.4. Поведение мтз при двойных замыканиях на землю
- •4.5. Выбор тока срабатывания
- •4.6. Выдержки времени защиты
- •4.7. Максимальная токовая защита с пуском от реле напряжения
- •4.8. Максимальные токовые защиты на переменном оперативном токе
- •4.9. Максимальные токовые защиты с реле прямого действия
- •4.10. Общая оценка и область применения мтз
- •Глава пятая токовые отсечки
- •5.1. Принцип действия токовых отсечек
- •5.2. Схемы отсечек
- •5.3. Отсечки мгновенного действия на линиях с односторонним питанием
- •5.4. Неселективные отсечки
- •5.5. Отсечки на линиях с двусторонним питанием
- •5.6. Отсечки с выдержкой времени
- •Вопросы для самопроверки
- •Глава шестая трансформаторы напряжения и схемы их соединения
- •6.1. Основные сведения
- •6.2. Погрешности трансформатора напряжения
- •6.3. Схемы соединения трансформаторов напряжения
- •6.4. Повреждения в цепях тн и контроль за их исправностью
- •6.5. Емкостные делители напряжения
- •6.6. Фильтр напряжений обратной последовательности
- •Глава седьмая токовая направленная защита
- •7.1. Необходимость направленной защиты в сетях с двусторонним питанием
- •7.2. Функциональная схема и принцип действия токовой направленной защиты
- •7.3. Схемы включения реле направления мощности
- •7.4. Поведение реле направления мощности, включенных на токи неповрежденных фаз
- •7.5. Схемы направленной максимальной токовой защиты
- •7.6. Выбор уставок срабатывания
- •7.7. Мертвая зона
- •7.8. Токовые направленные отсечки
- •7.9. Оценка токовых направленных защит
- •Глава восьмая защита от коротких замыканий на землю в сети с глухозаземленной нейтралью
- •8.1. Общие сведения
- •8.2. Максимальная токовая защита нулевой последовательности
- •8.3. Токовые направленные защиты нулевой последовательности
- •8.4. Отсечки нулевой последовательности
- •8.5. Ступенчатая токовая защита нулевой последовательности
- •8.6. Выбор уставок токовых защит нулевой последовательности
- •8.7. Оценка и область применения токовых ступенчатых защит нп
- •Глава девятая защита от однофазных замыканий на землю в сети с изолированной нейтралью
- •9.1. Токи и напряжения при однофазном замыкании на землю
- •9.2. Основные требования к защите
- •9.3. Принципы выполнения защиты от однофазных замыканий на землю
- •9.4. Фильтры токов и напряжений нулевой последовательности
- •9.5. Токовая защита нулевой последовательности
- •9.6. Направленная защита
- •9.7. Защита, реагирующая на высшие гармоники тока в установившемся режиме
- •9.8. Защиты, реагирующие на токи переходного режима
- •Глава десятая дифференциальная защита линий
- •10.1. Принцип действия продольной дифференциальной защиты
- •10.2. Токи небаланса в дифференциальной защите
- •10.3. Общие принципы выполнения продольной дифференциальной защиты линии
- •10.4. Дифференциальные реле с торможением
- •10.5. Полная схема дифференциальной защиты линий
- •10.6. Устройство контроля исправности соединительных проводов
- •10.7. Продольная дифференциальная защита линий типа дзл
- •10.8. Оценка продольной дифференциальной защиты
- •10.9. Принцип действия и виды поперечных дифференциальных защит параллельных линий
- •10.10. Токовая поперечная дифференциальная зашита
- •10.11. Направленная поперечная дифференциальная защита
- •10.12. Оценка направленных поперечных дифференциальных защит
- •Глава одиннадцатая дистанционная защита
- •11.1. Назначение и принцип действия
- •11.2. Характеристики выдержки времени дистанционных защит
- •11.3. Принципы выполнения селективной защиты сети с помощью ступенчатой дистанционной защиты
- •11.4. Структурная схема дистанционной защиты со ступенчатой характеристикой
- •11.5. Схемы включения дистанционных и пусковых измерительных органов на напряжение и ток сети
- •11.6. Характеристики срабатывания реле сопротивления и их изображение на комплексной плоскости
- •11.7. Общие принципы выполнения реле сопротивления, используемых в дз в качестве измерительных органов, и требования к их конструкциям
- •11.8. Реле сопротивления на диодных схемах сравнения абсолютных значений двух электрических величин
- •11.9. Реле сопротивления на сравнении фаз двух электрических величин. Выполняемые на имс
- •11.10. Схемы трех основных функциональных элементов pc, построенных на сравнении фаз
- •11.11. Реле сопротивления со сложными характеристиками срабатывания, выполненные на имс
- •11.12. Пусковые органы дистанционных защит
- •11.13. Погрешность срабатывания pc, обусловленная током Iр
- •11.14. Искажение действия дистанционных органов
- •11.16. Выполнение схем дистанционных защит
- •11.17. Дистанционная защита типа шдэ-2801, выполняемая на имс
- •11.18. Выбор уставок дистанционной защиты
- •11.19. Оценка дистанционной защиты
- •Глава двенадцатая предотвращение неправильных действий защиты при качаниях
- •12.1. Характер изменения тока, напряжения и сопротивления на зажимах реле при качаниях
- •12.2. Поведение защиты при качаниях
- •12.3. Меры по предотвращению неправильных действий рз при качаниях
- •12.4. Блокирующее устройство, реагирующее на несимметрию токов или напряжений сети
- •12.5. Устройство блокировки при качаниях, реагирующее на скорость изменения тока, напряжения или сопротивления
- •12.6. Блокирующее устройство, реагирующее на скачкообразное приращение электрических величин (векторов тока прямой и обратной последовательностей)
- •Глава тринадцатая высокочастотные защиты
- •13.1. Назначение и виды высокочастотных защит
- •13.2. Принцип действия направленной защиты с вч-блокировкой
5.4. Неселективные отсечки
Н
еселективной
отсечкой называется мгновенная отсечка,
действующая при КЗ за пределами своей
ЛЭП. Такая отсечка применяется для
быстрого отключения КЗ в пределах всей
защищаемой ЛЭП. Неселективное действие
отсечки при КЗ вне ЛЭП исправляется при
помощи АПВ, включающего обратно
отключившуюся ЛЭП. Примеры применения
неселективной отсечки приведены на
рис.5.5.
В первом случае на линии W1 (рис.5.5, а) установлена отсечка 1, неселективная по отношению к РЗ трансформаторов. Ток срабатывания отсечки 1 отстраивается от конца зоны отсечек 2 и 3, установленных на трансформаторах Т2 и ТЗ, т.е. Iс.з = (1,1 – 1,2) Iс.з 2 (или Iс.з 3).
При КЗ в каком-либо трансформаторе, например ТЗ, в пределах зоны действия отсечки 1 последняя срабатывает неселективно одновременно с отсечкой поврежденного трансформатора. В результате этого, кроме трансформатора ТЗ, неселективно отключается W1. При этом пускается устройство АПВ, которое включает обратно неселективно отключившуюся ЛЭП W1 и восстанавливает питание подстанции В.
Во втором случае (рис. 5.5, б) на W1 для той же цели установлена отсечка 1, неселективная относительно мгновенной отсечки 2 ЛЭП W2. Отсечка 1 отстроена по току от конца зоны действия отсечки 2, но поскольку их выдержки времени одинаковы (t1 = t2 = 0), то при КЗ на участке ЛЭП W2, где зоны действия отсечек совпадают, обе они могут сработать одновременно. Действием АПВ и в этом случае неповрежденная линия W1 будет включена в работу, а поврежденная W2 отключится вновь. Для предотвращения повторного отключения W1 ее отсечка выводится из работы после действия АПВ и спустя некоторое время после успешного включения W1. При этом должно быть соблюдено условие tАПВ1 < tАПВ3, где tАПВ1 и tАПВ3 соответственно выдержки времени АПВ ЛЭП W1 и W2.
5.5. Отсечки на линиях с двусторонним питанием
На линии с двусторонним питанием мгновенная отсечка не должна действовать при КЗ за пределами защищаемой ЛЭП (в точках КА и КВ на рис.5.6). Ток срабатывания отсечки выбирают большим тока IкА, проходящего от генератора А при КЗ на шинах В, и тока IкВ, проходящего от генератора В при КЗ на шинах А. Ток срабатывания вычисляется по выражению (5.2), где вместо Iк(М)mах подставляется больший из токов IкА или IкВ. Во избежание неправильной работы отсечки при качаниях ее ток срабатывания должен отстраиваться и от токов качания Iкач, для чего Iс.з должно удовлетворять одновременно с (5.2) условию (5.4):
(5.4)
где kотс = 1,2÷1,3.
Максимальное значение Iкач определяется по формуле
г
де
Е
– ЭДС
генераторов А
и В (принимается,
что ЕА
=
ЕB
=
Е
= 1,05Uген);
ХАВ
– суммарное сопротивление между
генераторами А
и
В, равное
ХгА
+ Хсв
+ ХгВ,
при
этом ХгА
и
ХгВ
–сверхпереходные
сопротивления обоих генераторов Х''d;
Хсв
– сумма
сопротивлений всех остальных элементов,
включенных между шинами генераторов А
и
В.
Ток срабатывания выбирается большим из двух значений, полученных по условиям (5.2) и (5.4). На ЛЭП с двусторонним питанием отсечки устанавливаются с обеих сторон ЛЭП с одинаковым током срабатывания. Зона действия каждой отсечки определяется по точке пересечения N прямой Iс.з с соответствующей кривой тока. Схема отсечки для ЛЭП с двусторонним питанием не отличается от схем на рис.5.2, а.