
- •Глава первая общие понятия о релейной защите
- •1.1. Назначение релейной защиты
- •1.2. Повреждения в электроустановках
- •1.3. Векторные диаграммы токов и напряжений при кз
- •1.4. Ненормальные режимы
- •1.5. Основные требования, предъявляемые к устройствам релейной защиты
- •1.6. Структурные части и основные элементы рз
- •1.7. Виды устройств рз
- •1.8. Изображение схем рз на чертежах
- •1.9. Источники и схемы оперативного тока
- •Глава вторая принципы построения измерительных и логических органов релейной защиты
- •2.1. Общие принципы конструктивного исполнения реле
- •2.2. Электромеханические реле
- •2.3. Конструкции реле, выполняемых на электромагнитном принципе
- •2.4. Промежуточные реле (логические элементы)
- •2.5. Указательные реле
- •2.6. Реле времени
- •2.7. Поляризованные реле
- •2.8. Индукционные реле
- •2.9. Реле тока на индукционном принципе
- •2.10. Индукционные реле тока серий рт-80 и рт-90
- •2.11. Индукционные реле направления мощности
- •2.12. Магнитоэлектрические реле
- •2.13. Измерительные органы на полупроводниковой элементной базе
- •2.14. Типовые функциональные элементы полупроводниковых ио
- •2.15. Аналоговые микросхемы, используемые для построения функциональных элементов ио
- •2.16. Основные схемы включения операционных усилителей, используемые в устройствах рз
- •2.17. Простейшие функциональные элементы, выполняемые на оу
- •2.18. Схемы сравнения двух электрических величин
- •2.19. Измерительные органы тока и напряжения на имс
- •2.20. Измерительные органы (реле) с двумя входными величинами на интегральных микросхемах
- •2.21. Элементы логической и исполнительной частей устройств рз
- •2.22. Органы логики на имс
- •Глава третья трансформаторы тока и схемы их соединения
- •3.1. Трансформаторы тока и их погрешности
- •3.2. Параметры, влияющие на уменьшение намагничивающего тока
- •3.3. Требования к точности трансформаторов тока, питающих рз
- •3.4. Выбор трансформаторов тока и допустимой вторичной нагрузки
- •3.5. Типовые схемы соединения обмоток трансформаторов тока
- •3.6. Нагрузка трансформаторов тока
- •3.7. Фильтры симметричных составляющих токов
- •3.8. Новые преобразователи первичного тока
- •Глава четвертая максимальная токовая защита
- •4.1. Принцип действия токовых зашит
- •4.2. Максимальная токовая зашита лэп
- •4.3. Схемы мтз на постоянном оперативном токе
- •4.4. Поведение мтз при двойных замыканиях на землю
- •4.5. Выбор тока срабатывания
- •4.6. Выдержки времени защиты
- •4.7. Максимальная токовая защита с пуском от реле напряжения
- •4.8. Максимальные токовые защиты на переменном оперативном токе
- •4.9. Максимальные токовые защиты с реле прямого действия
- •4.10. Общая оценка и область применения мтз
- •Глава пятая токовые отсечки
- •5.1. Принцип действия токовых отсечек
- •5.2. Схемы отсечек
- •5.3. Отсечки мгновенного действия на линиях с односторонним питанием
- •5.4. Неселективные отсечки
- •5.5. Отсечки на линиях с двусторонним питанием
- •5.6. Отсечки с выдержкой времени
- •Вопросы для самопроверки
- •Глава шестая трансформаторы напряжения и схемы их соединения
- •6.1. Основные сведения
- •6.2. Погрешности трансформатора напряжения
- •6.3. Схемы соединения трансформаторов напряжения
- •6.4. Повреждения в цепях тн и контроль за их исправностью
- •6.5. Емкостные делители напряжения
- •6.6. Фильтр напряжений обратной последовательности
- •Глава седьмая токовая направленная защита
- •7.1. Необходимость направленной защиты в сетях с двусторонним питанием
- •7.2. Функциональная схема и принцип действия токовой направленной защиты
- •7.3. Схемы включения реле направления мощности
- •7.4. Поведение реле направления мощности, включенных на токи неповрежденных фаз
- •7.5. Схемы направленной максимальной токовой защиты
- •7.6. Выбор уставок срабатывания
- •7.7. Мертвая зона
- •7.8. Токовые направленные отсечки
- •7.9. Оценка токовых направленных защит
- •Глава восьмая защита от коротких замыканий на землю в сети с глухозаземленной нейтралью
- •8.1. Общие сведения
- •8.2. Максимальная токовая защита нулевой последовательности
- •8.3. Токовые направленные защиты нулевой последовательности
- •8.4. Отсечки нулевой последовательности
- •8.5. Ступенчатая токовая защита нулевой последовательности
- •8.6. Выбор уставок токовых защит нулевой последовательности
- •8.7. Оценка и область применения токовых ступенчатых защит нп
- •Глава девятая защита от однофазных замыканий на землю в сети с изолированной нейтралью
- •9.1. Токи и напряжения при однофазном замыкании на землю
- •9.2. Основные требования к защите
- •9.3. Принципы выполнения защиты от однофазных замыканий на землю
- •9.4. Фильтры токов и напряжений нулевой последовательности
- •9.5. Токовая защита нулевой последовательности
- •9.6. Направленная защита
- •9.7. Защита, реагирующая на высшие гармоники тока в установившемся режиме
- •9.8. Защиты, реагирующие на токи переходного режима
- •Глава десятая дифференциальная защита линий
- •10.1. Принцип действия продольной дифференциальной защиты
- •10.2. Токи небаланса в дифференциальной защите
- •10.3. Общие принципы выполнения продольной дифференциальной защиты линии
- •10.4. Дифференциальные реле с торможением
- •10.5. Полная схема дифференциальной защиты линий
- •10.6. Устройство контроля исправности соединительных проводов
- •10.7. Продольная дифференциальная защита линий типа дзл
- •10.8. Оценка продольной дифференциальной защиты
- •10.9. Принцип действия и виды поперечных дифференциальных защит параллельных линий
- •10.10. Токовая поперечная дифференциальная зашита
- •10.11. Направленная поперечная дифференциальная защита
- •10.12. Оценка направленных поперечных дифференциальных защит
- •Глава одиннадцатая дистанционная защита
- •11.1. Назначение и принцип действия
- •11.2. Характеристики выдержки времени дистанционных защит
- •11.3. Принципы выполнения селективной защиты сети с помощью ступенчатой дистанционной защиты
- •11.4. Структурная схема дистанционной защиты со ступенчатой характеристикой
- •11.5. Схемы включения дистанционных и пусковых измерительных органов на напряжение и ток сети
- •11.6. Характеристики срабатывания реле сопротивления и их изображение на комплексной плоскости
- •11.7. Общие принципы выполнения реле сопротивления, используемых в дз в качестве измерительных органов, и требования к их конструкциям
- •11.8. Реле сопротивления на диодных схемах сравнения абсолютных значений двух электрических величин
- •11.9. Реле сопротивления на сравнении фаз двух электрических величин. Выполняемые на имс
- •11.10. Схемы трех основных функциональных элементов pc, построенных на сравнении фаз
- •11.11. Реле сопротивления со сложными характеристиками срабатывания, выполненные на имс
- •11.12. Пусковые органы дистанционных защит
- •11.13. Погрешность срабатывания pc, обусловленная током Iр
- •11.14. Искажение действия дистанционных органов
- •11.16. Выполнение схем дистанционных защит
- •11.17. Дистанционная защита типа шдэ-2801, выполняемая на имс
- •11.18. Выбор уставок дистанционной защиты
- •11.19. Оценка дистанционной защиты
- •Глава двенадцатая предотвращение неправильных действий защиты при качаниях
- •12.1. Характер изменения тока, напряжения и сопротивления на зажимах реле при качаниях
- •12.2. Поведение защиты при качаниях
- •12.3. Меры по предотвращению неправильных действий рз при качаниях
- •12.4. Блокирующее устройство, реагирующее на несимметрию токов или напряжений сети
- •12.5. Устройство блокировки при качаниях, реагирующее на скорость изменения тока, напряжения или сопротивления
- •12.6. Блокирующее устройство, реагирующее на скачкообразное приращение электрических величин (векторов тока прямой и обратной последовательностей)
- •Глава тринадцатая высокочастотные защиты
- •13.1. Назначение и виды высокочастотных защит
- •13.2. Принцип действия направленной защиты с вч-блокировкой
Глава четвертая максимальная токовая защита
4.1. Принцип действия токовых зашит
Одним из признаков возникновения КЗ является увеличение тока в ЛЭП. Этот признак используется для выполнения РЗ, называемых токовыми. Токовые РЗ приходят в действие при увеличении тока в фазах ЛЭП сверх определенного значения. В качестве реле, реагирующих на возрастание тока, служат максимальные токовые реле (см. гл. 2).
Токовые РЗ подразделяются на максимальные токовые РЗ и токовые отсечки. Главное различие между этими РЗ заключается в способе обеспечения селективности.
Селективность действия максимальных токовых РЗ достигается с помощью выдержки времени. Селективность токовых отсечек обеспечивается соответствующим выбором тока срабатывания [10, 26].
4.2. Максимальная токовая зашита лэп
П
ринцип
действия и селективности защиты.
Максимальные
токовые защиты (МТЗ) являются основным
видом РЗ для сетей с односторонним
питанием. Они устанавливаются в начале
каждой ЛЭП со стороны источника питания
(рис.4.1, а).
Каждая ЛЭП имеет самостоятельную РЗ,
отключающую ЛЭП в случае повреждения
на ней самой или на шинах питающейся от
нее ПС, и резервирующую РЗ соседней ЛЭП.
При КЗ в какой-либо точке сети, например в точке К1 (рис.4.1, а), ток КЗ проходит по всем участкам сети, расположенным между источником питания и местом повреждения, в результате чего приходят в действие все РЗ (1, 2, 3, 4). Однако по условию селективности сработать на отключение должна только РЗ 4, установленная на поврежденной ЛЭП. Для обеспечения указанной селективности МТЗ выполняются с выдержками времени, нарастающими от потребителей к источнику питания, как это показано на рис.4.1, б. При соблюдении этого принципа в случае КЗ в точке К1 раньше других сработает МТЗ 4 и отключит поврежденную ЛЭП. Защиты 1, 2 и 3, имеющие большие выдержки времени, вернутся в начальное положение, не успев подействовать на отключение. Соответственно при КЗ в точке К2 быстрее всех сработает МТЗ 3, а МТЗ 1 и 2, имеющие большее время, не успеют подействовать.
Разновидности максимальной токовой защиты. Максимальные токовые защиты выполняются на электромеханических и статических реле прямого и косвенного действия (см. §1.8) по трех- и двухфазным схемам (см. §3.5). По способу питания оперативных цепей МТЗ косвенного действия делятся на РЗ с постоянным и переменным оперативным током. По характеру зависимости времени действия от тока МТЗ подразделяются на РЗ с независимой и зависимой характеристиками (рис.4.1, в).
4.3. Схемы мтз на постоянном оперативном токе
С
труктурная
схема. На
рис.4.2 приведена структурная схема
трехфазной МТЗ с независимой от тока
выдержкой времени, характеризующая
общие принципы выполнения МТЗ при любой
используемой элементной базе.
Измерительная часть МТЗ 1 состоит из измерительных органов ИО (в данном случае токовых реле КА мгновенного действия). В трехфазной схеме ИО предусматриваются на каждой фазе, они питаются вторичными токами соответствующих фаз ТТ, соединенных по схеме звезды.
Логическая часть 2 состоит из логического элемента (ЛЭ), выполняющего функцию ИЛИ (DW), органа времени КТ (обычно одного на три фазы), создающего выдержку времени t, сигнального реле КН.
Исполнительный орган 3, выполняемый посредством выходного промежуточного реле KL, или тиристорной схемы, срабатывая, передает команду на отключение выключателя Q. Исполнительный орган должен обладать мощным выходным сигналом, достаточным для приведения в действие электромагнита отключения (ЭО) YAТ привода выключателя.
При возникновении повреждения на защищаемой линии срабатывают токовые реле тех фаз, по которым проходит ток КЗ. При этом у электромеханических реле замыкаются контакты, у статических – появляется выходное напряжение (сигнал) соответствующего уровня (логическая 1 или логический 0).
Сработавшие ИО воздействуют через логический элемент ИЛИ на орган времени КТ, который по истечении заданной выдержки времени выдает сигнал, приводящий в действие исполнительный орган KL. Последний срабатывает и подает напряжение от источника оперативного тока в электромагнит отключения выключателя YAT. После отключения повреждения ток короткого замыкания прекращается, измерительные органы и все элементы РЗ возвращаются в исходное состояние. Для успешного размыкания тока, проходящего по ЭО (YAT), контактами промежуточного реле KL после отключения КЗ в цепи отключения на приводе выключателя предусматривается блокировочный вспомогательный контакт (БК) SQ. При включенном выключателе SQ замкнут (рис.4.3, б и в) и размыкается при отключении выключателя Q, разрывая цепь тока электромагнита отключения YAT.
В схеме с выходным промежуточным реле размыкание цепи тока, питающего электромагнит отключения с помощью SQ, необходимо, поскольку контакты промежуточного реле KL не рассчитываются на разрыв относительно большого тока электромагнита отключения YAT. При тиристорной схеме отключения выключателя, для прекращения тока в цепи YAT, также необходимо использовать БК, так как тиристор не может закрыться сам при исчезновении открывшего его сигнала.
В
ремя
действия рассмотренной МТЗ определяется
выдержкой времени, установленной на
реле времени КТ,
и
не зависит от значения тока КЗ, поэтому
такая РЗ называется защитой с независимой
выдержкой времени и имеет характеристику
t
= f(Iр)
в виде прямой линии 1
на
рис.4.1, в.
Принципиальные схемы МТЗ на постоянном оперативном токе. Схемы на электромеханических реле. На рис.4.3 приведена трехфазная схема МТЗ, выполненная на электромеханических реле, которые пока еще преобладают в электрических сетях нашей страны. Построение схемы и все ее элементы соответствуют структурной схеме (см. рис.4.2). Три измерительных органа (рис.4.3, а) выполняются с помощью трех реле РТ-40, орган времени – с помощью реле типа РВ-100, исполнительный элемент – посредством промежуточного реле типов РП-20, РП-16 или других промежуточных реле, контакты которых рассчитаны на ток электромагнита отключения выключателя. Из рассмотрения схемы понятно, что эта защита действует при всех видах КЗ. В случае недостаточного значения тока при К(1) в нулевой провод включается реле КА0 (на схеме оно не показано), чувствительность которого выше, чем у реле КАф в фазах, так как КА0 не надо отстраивать от Iнагр mах. Контакты реле КА соединяются по схеме ИЛИ. Питание оперативных цепей защиты осуществляется постоянным током с шин управления (ШУ) через свои предохранители, а электромагнит отключения ЭО от других предохранителей. Трехфазные схемы обычно применяются в сетях с глухозаземленными нейтралями (в России это сети 110кВ и выше).
Схемы на интегральных микроэлементах. На рис.4.4 в качестве примера приведена принципиальная схема трехфазной МТЗ (одна из возможных), построенная на ИМС. Рассматривается вариант трехфазной схемы в односистемном исполнении, при котором вместо трех ИО тока (реле тока) устанавливается один орган, реагирующий на все виды КЗ. Такое исполнение защиты уменьшает количество измерительных реле, что упрощает схему. Как уже отмечалось в §2.14, полупроводниковый ИО тока (реле тока) имеет три узла: входной узел (ВУ), преобразующий входной сигнал; узел сравнения (УС), сравнивающий его с заданной величиной (уставкой срабатывания); узел выхода (УВ), формирующий выходной сигнал ИО достаточного уровня, воздействующий на элементы логической части защиты.
Входной
узел
получает сигналы в виде синусоидальных
мгновенных значений токов трех фаз iA,
iB,
iC
от
измерительных ТТ защищаемого объекта.
Эти токи промышленной частоты с помощью
трех промежуточных ТТ LTAA,
LTAB,
LTAC
преобразуются
в токи заданного уровня и поступают
соответственно на вход выпрямительных
мостов VSA,
VSB,
VSC,
которые
превращают переменный ток ПТТ в
выпрямленный ток постоянного знака.
Чтобы обеспечить действие реле тока
односистемной МТЗ при всех видах КЗ,
выходы трех выпрямительных мостов
соединяются между собой последовательно
(рис.4.4, а),
образуя общую цепь выпрямленного тока,
замкнутую на выходной резистор Rвых.
При таком исполнении схема входного
блока работает как максиселектор. На
выходном резисторе схемы (Rвых)
выделяется один выходной сигнал ВУ в
виде напряжения (uRвых
= iвых max
Rвых),
соответствующий наибольшему из мгновенных
токов фаз, поступающих на вход узла.
Мгновенное значение выпрямленного тока
iвых max,
протекающего
по Rвых,
определяется входным током iвх
и ему пропорционально. В качестве примера
проследим, как проходит ток по выходной
цепи выпрямителей VSA,
VSB,
VSC
при
трехфазном КЗ. Допустим, что в данный
момент из трех входных мгновенных токов
большим является ток положительной
полуволны iA.
В этом случае мост будет работать в
режиме N
(два
диода открыты положительным током, два
других заперты), а четыре диода каждого
моста с меньшими токами VSB
и
VSC
под
действием большего выпрямленного тока
(ivsa)
будут
открыты (работают в режиме А).
С учетом этого выпрямленный ток +
ivsa,
проходя
через свой выпрямитель, открывает диоды
мостов VSB
и
VSC,
замыкается
через них, через резистор Rвых
и возвращается в
VSA.
При
этом меньшие токи з
амыкаются
по открытым диодам своих мостов, не
выходя за их пределы, а на зажимах Rвых
появляется напряжение uRвых
= ivsa
Rвых,
которое
поступает на узел сравнения.
Узел сравнения ИО на рис. 4.4, а построен на времяимпульсном принципе1. Устройство и принцип работы подобных ИО рассмотрены в гл. 2, поэтому ниже дается краткое описание работы в схеме МТЗ. В состав узла сравнения, выполняемого по указанному принципу, входят:
пороговое устройство А1, построенное на ОУ с постоянным опорным напряжением положительного знака Uоп на H-входе усилителя;
времясравнивающая цепочка, образованная резисторами R5-R6, конденсатором С1 и двухсторонним стабилизатором VD8;
второе пороговое устройство А2, выполненное по схеме триггера на ОУ с положительной обратной связью (UOC= Uв), поступающей на H-вход по резистору R9. Работа триггера определяется значением и знаком напряжения на инвертирующем входе, поступающем с конденсатора C1(UC1).
Работа схемы. В нормальном режиме, когда по защищаемому объекту проходят токи нагрузки, мгновенное значение выпрямленного напряжения (uRвых), поступающего с выходного узла УВ на И-вход А1, меньше UопA1. При этом входное напряжение А1 (и – Uоп1) имеет отрицательную полярность, поэтому на выходе А1 устанавливается напряжение UвыхA1, положительное по знаку (противоположное знаку входного сигнала) и наибольшее по значению 12-13 В (при Еп = ± 15 В), поскольку при отсутствии обратной связи ОУ работает в насыщенной части выходной характеристики (см. гл. 2). Под действием этого напряжения через резистор R5 происходит заряд конденсатора C1 до наибольшего положительного напряжения + UC1, ограниченного стабилитроном VD8. При положительном напряжении на И-входе А2 его выходное напряжение имеет отрицательное наибольшее для ОУ значение. В этом режиме орган тока не работает, так как при отрицательном напряжении диод VD5 открыт и транзистор VT1 выходного узла заперт и сигнал на пуск логической схемы (рис.4.4, б) отсутствует (элемент времени КТ и реле KL).
При КЗ в сети защищаемого объекта мгновенное выпрямленное напряжение uRвых становится больше UопA1 на время, пока и > иопА1; напряжение на входе ОУ (uRвых – UопA1) изменяет свой знак (с "–" на "+"), А1 переключается и на его выходе появляется максимальное напряжение отрицательного знака (–UвыхА1). Под действием напряжения отрицательного знака конденсатор С1 по резисторам R5 и R6 (диод VD закрыт) перезаряжается, напряжение UC1 уменьшается, и после прохождения через нулевое значение UC1 становится отрицательным и начинает увеличиваться по абсолютному значению. Через некоторое (заданное) время tп напряжение на конденсаторе будет —UC1, а следовательно, и на И-входе А2 достигнет уровня, при котором А2 переключится и на его выходе появится максимальное положительное напряжение UвыхА2.Под действием этого напряжения диод VD5 выходного узла запирается, тогда на базе VT1 появляется положительный сигнал – транзистор Т1 открывается, и выходной узел ИО МТЗ передает на логическую схему команду на срабатывание. Элемент времени КТ (рис.4.4, б) срабатывает с заданной выдержкой времени, промежуточное реле KL2 замыкает контакты и посылает импульс на отключение выключателя защищаемого объекта. После отключения КЗ входной ток, а следовательно, и напряжение uRвых снижаются и становятся меньше опорного напряжения А1 – ИО тока и логические элементы МТЗ возвращаются в исходное состояние.
В качестве ИО используется реле тока типа РСТ-13 или реле типа ТО111, входящее в комплект устройств ЯРЭ-2201, предназначенных для выполнения РЗ в КРУ 6-10 кВ. Для создания выдержки времени в рассматриваемой схеме могут использоваться статическое реле времени из комплекта ЯРЭ-2201 типа ВО200 с регулировкой времени от 0,2 до 12 с или реле РВ-01 с регулировкой времени от 0,1 до 10 с. В качестве промежуточных реле применяются малогабаритные реле типа РП-13 и реле с магнитоуправляемыми контактами типа РПГ-5.
Защита с зависимой характеристикой. Наряду с независимой применяется МТЗ с зависимой и ограниченно зависимой характеристиками (кривые 2 и 3 на рис.4.1, в). Оба вида зависимых МТЗ выполняются при помощи токовых реле, работающих не мгновенно, а с выдержкой времени, зависящей от значения тока. В схеме зависимой МТЗ на рис.4.2, г, кроме реле времени, отсутствуют промежуточное и указательное реле, так как реле типов РТ-80 и РТ-90
1
Согласно этому принципу ИО тока
срабатывает при условии, что сигнал,
поступающий на вход УС
(uRвых),
превышает Uоп
в течение
времени
,
где tп
– время превышения; Т
– период тока (50 Гц);
tн
– время, в течение которого uRвых
< Uоп.
Время tп
обеспечивает отстройку от импульсных
помех высокой частоты.
имеют контакты достаточной мощности и сигнальный флажок, выпадающий при срабатывании реле. Статические ИО тока использованы в МТЗ с зависимой характеристикой в устройстве типа ЯРЭ-2201, выпускаемом ЧЭАЗ.
В отличие от РЗ с независимой характеристикой (прямая 1 на рис.4.1, в) МТЗ с зависимой характеристикой (кривые 2 и 3) действуют при токах Iр = (1-2)Iс.з со значительно большей выдержкой времени, чем при КЗ, что улучшает отстройку РЗ от кратковременных перегрузок (Iп).
Защиты с зависимой характеристикой позволяют также ускорить отключение при повреждении в начале ЛЭП (точка К1 на рис.4.1, г). Однако согласование выдержек времени независимых МТЗ значительно проще (см. §4.5).
Трехфазные схемы МТЗ, приведенные на рис.4.3, в, г, реагируют на все виды КЗ, включая и однофазные, и поэтому их можно применять в сети с глухозаземленной нейтралью, где возможны как междуфазные, так и однофазные КЗ.
Схемы двухфазной защиты на постоянном оперативном токе. В случае, когда МТЗ должна действовать только при междуфазных КЗ, применяются двухфазные схемы с двумя или одним токовым реле.
Д
вухрелейная
схема с независимой характеристикой
(рис.4.5,
а,
б).
Токовые цепи МТЗ выполняются по схеме
неполной звезды (см. §3.6). Достоинством
двухрелейной схемы является то, что
она, реагируя на все междуфазные КЗ,
экономичнее трехфазной схемы (два ТТ и
реле вместо трех).
К недостаткам двухфазной схемы с двумя реле нужно отнести ее меньшую чувствительность (по сравнению с трехфазной схемой) при двухфазных КЗ за трансформатором с соединением обмоток y/Δ (см. рис.3.18). При необходимости чувствительность двухфазной схемы можно повысить, установив третье токовое реле в общем проводе токовых цепей. В этом проводе (см. §3.6) протекает геометрическая сумма токов двух фаз, питающих схему, равная току третьей (отсутствующей в схеме) фазы В. С дополнительным реле двухфазная схема становится по чувствительности равноценной трехфазной. Двухфазные схемы широко применяются в сетях с изолированной нейтралью, где возможны только междуфазные КЗ. Двухфазные схемы применяются в качестве МТЗ от междуфазных КЗ и в сетях с глухозаземленной нейтралью. При этом для отключения однофазных КЗ устанавливается дополнительная МТЗ, реагирующая на ток НП.
Однорелейная схема (рис.4.5, в, г). Защита состоит из тех же элементов, что и предыдущая схема, но выполняется одним токовым реле КА, которое включается на разность токов двух фаз Ip = Ia – Ic и реагирует на все случаи междуфазных КЗ.
К недостаткам, ограничивающим применение схемы, нужно отнести меньшую чувствительность по сравнению с двухрелейной схемой при КЗ между фазами АВ и ВС; недействие МТЗ при одном из трех возможных случаев двухфазного КЗ за трансформатором с соединением обмоток y/Δ (см. §3.6) когда Ip = Ia – Ic = 0.
Однорелейная схема находит применение в распределительных сетях 6-10 кВ, питающих трансформаторы с соединением обмоток y/y и для РЗ электродвигателей.
Двухфазная защита с зависимой характеристикой. Токовые цепи этой МТЗ выполняются так же, как и РЗ с независимой характеристикой (рис.4.5, а, в). В качестве реле тока с зависимой характеристикой выдержки времени в отечественных схемах используются реле типов РТ-80 и РТ-90. Схемы оперативных цепей МТЗ аналогичны схемам на рис.4.5, б, г за исключением того, что в них отсутствуют реле времени (КТ).