
- •Глава первая общие понятия о релейной защите
- •1.1. Назначение релейной защиты
- •1.2. Повреждения в электроустановках
- •1.3. Векторные диаграммы токов и напряжений при кз
- •1.4. Ненормальные режимы
- •1.5. Основные требования, предъявляемые к устройствам релейной защиты
- •1.6. Структурные части и основные элементы рз
- •1.7. Виды устройств рз
- •1.8. Изображение схем рз на чертежах
- •1.9. Источники и схемы оперативного тока
- •Глава вторая принципы построения измерительных и логических органов релейной защиты
- •2.1. Общие принципы конструктивного исполнения реле
- •2.2. Электромеханические реле
- •2.3. Конструкции реле, выполняемых на электромагнитном принципе
- •2.4. Промежуточные реле (логические элементы)
- •2.5. Указательные реле
- •2.6. Реле времени
- •2.7. Поляризованные реле
- •2.8. Индукционные реле
- •2.9. Реле тока на индукционном принципе
- •2.10. Индукционные реле тока серий рт-80 и рт-90
- •2.11. Индукционные реле направления мощности
- •2.12. Магнитоэлектрические реле
- •2.13. Измерительные органы на полупроводниковой элементной базе
- •2.14. Типовые функциональные элементы полупроводниковых ио
- •2.15. Аналоговые микросхемы, используемые для построения функциональных элементов ио
- •2.16. Основные схемы включения операционных усилителей, используемые в устройствах рз
- •2.17. Простейшие функциональные элементы, выполняемые на оу
- •2.18. Схемы сравнения двух электрических величин
- •2.19. Измерительные органы тока и напряжения на имс
- •2.20. Измерительные органы (реле) с двумя входными величинами на интегральных микросхемах
- •2.21. Элементы логической и исполнительной частей устройств рз
- •2.22. Органы логики на имс
- •Глава третья трансформаторы тока и схемы их соединения
- •3.1. Трансформаторы тока и их погрешности
- •3.2. Параметры, влияющие на уменьшение намагничивающего тока
- •3.3. Требования к точности трансформаторов тока, питающих рз
- •3.4. Выбор трансформаторов тока и допустимой вторичной нагрузки
- •3.5. Типовые схемы соединения обмоток трансформаторов тока
- •3.6. Нагрузка трансформаторов тока
- •3.7. Фильтры симметричных составляющих токов
- •3.8. Новые преобразователи первичного тока
- •Глава четвертая максимальная токовая защита
- •4.1. Принцип действия токовых зашит
- •4.2. Максимальная токовая зашита лэп
- •4.3. Схемы мтз на постоянном оперативном токе
- •4.4. Поведение мтз при двойных замыканиях на землю
- •4.5. Выбор тока срабатывания
- •4.6. Выдержки времени защиты
- •4.7. Максимальная токовая защита с пуском от реле напряжения
- •4.8. Максимальные токовые защиты на переменном оперативном токе
- •4.9. Максимальные токовые защиты с реле прямого действия
- •4.10. Общая оценка и область применения мтз
- •Глава пятая токовые отсечки
- •5.1. Принцип действия токовых отсечек
- •5.2. Схемы отсечек
- •5.3. Отсечки мгновенного действия на линиях с односторонним питанием
- •5.4. Неселективные отсечки
- •5.5. Отсечки на линиях с двусторонним питанием
- •5.6. Отсечки с выдержкой времени
- •Вопросы для самопроверки
- •Глава шестая трансформаторы напряжения и схемы их соединения
- •6.1. Основные сведения
- •6.2. Погрешности трансформатора напряжения
- •6.3. Схемы соединения трансформаторов напряжения
- •6.4. Повреждения в цепях тн и контроль за их исправностью
- •6.5. Емкостные делители напряжения
- •6.6. Фильтр напряжений обратной последовательности
- •Глава седьмая токовая направленная защита
- •7.1. Необходимость направленной защиты в сетях с двусторонним питанием
- •7.2. Функциональная схема и принцип действия токовой направленной защиты
- •7.3. Схемы включения реле направления мощности
- •7.4. Поведение реле направления мощности, включенных на токи неповрежденных фаз
- •7.5. Схемы направленной максимальной токовой защиты
- •7.6. Выбор уставок срабатывания
- •7.7. Мертвая зона
- •7.8. Токовые направленные отсечки
- •7.9. Оценка токовых направленных защит
- •Глава восьмая защита от коротких замыканий на землю в сети с глухозаземленной нейтралью
- •8.1. Общие сведения
- •8.2. Максимальная токовая защита нулевой последовательности
- •8.3. Токовые направленные защиты нулевой последовательности
- •8.4. Отсечки нулевой последовательности
- •8.5. Ступенчатая токовая защита нулевой последовательности
- •8.6. Выбор уставок токовых защит нулевой последовательности
- •8.7. Оценка и область применения токовых ступенчатых защит нп
- •Глава девятая защита от однофазных замыканий на землю в сети с изолированной нейтралью
- •9.1. Токи и напряжения при однофазном замыкании на землю
- •9.2. Основные требования к защите
- •9.3. Принципы выполнения защиты от однофазных замыканий на землю
- •9.4. Фильтры токов и напряжений нулевой последовательности
- •9.5. Токовая защита нулевой последовательности
- •9.6. Направленная защита
- •9.7. Защита, реагирующая на высшие гармоники тока в установившемся режиме
- •9.8. Защиты, реагирующие на токи переходного режима
- •Глава десятая дифференциальная защита линий
- •10.1. Принцип действия продольной дифференциальной защиты
- •10.2. Токи небаланса в дифференциальной защите
- •10.3. Общие принципы выполнения продольной дифференциальной защиты линии
- •10.4. Дифференциальные реле с торможением
- •10.5. Полная схема дифференциальной защиты линий
- •10.6. Устройство контроля исправности соединительных проводов
- •10.7. Продольная дифференциальная защита линий типа дзл
- •10.8. Оценка продольной дифференциальной защиты
- •10.9. Принцип действия и виды поперечных дифференциальных защит параллельных линий
- •10.10. Токовая поперечная дифференциальная зашита
- •10.11. Направленная поперечная дифференциальная защита
- •10.12. Оценка направленных поперечных дифференциальных защит
- •Глава одиннадцатая дистанционная защита
- •11.1. Назначение и принцип действия
- •11.2. Характеристики выдержки времени дистанционных защит
- •11.3. Принципы выполнения селективной защиты сети с помощью ступенчатой дистанционной защиты
- •11.4. Структурная схема дистанционной защиты со ступенчатой характеристикой
- •11.5. Схемы включения дистанционных и пусковых измерительных органов на напряжение и ток сети
- •11.6. Характеристики срабатывания реле сопротивления и их изображение на комплексной плоскости
- •11.7. Общие принципы выполнения реле сопротивления, используемых в дз в качестве измерительных органов, и требования к их конструкциям
- •11.8. Реле сопротивления на диодных схемах сравнения абсолютных значений двух электрических величин
- •11.9. Реле сопротивления на сравнении фаз двух электрических величин. Выполняемые на имс
- •11.10. Схемы трех основных функциональных элементов pc, построенных на сравнении фаз
- •11.11. Реле сопротивления со сложными характеристиками срабатывания, выполненные на имс
- •11.12. Пусковые органы дистанционных защит
- •11.13. Погрешность срабатывания pc, обусловленная током Iр
- •11.14. Искажение действия дистанционных органов
- •11.16. Выполнение схем дистанционных защит
- •11.17. Дистанционная защита типа шдэ-2801, выполняемая на имс
- •11.18. Выбор уставок дистанционной защиты
- •11.19. Оценка дистанционной защиты
- •Глава двенадцатая предотвращение неправильных действий защиты при качаниях
- •12.1. Характер изменения тока, напряжения и сопротивления на зажимах реле при качаниях
- •12.2. Поведение защиты при качаниях
- •12.3. Меры по предотвращению неправильных действий рз при качаниях
- •12.4. Блокирующее устройство, реагирующее на несимметрию токов или напряжений сети
- •12.5. Устройство блокировки при качаниях, реагирующее на скорость изменения тока, напряжения или сопротивления
- •12.6. Блокирующее устройство, реагирующее на скачкообразное приращение электрических величин (векторов тока прямой и обратной последовательностей)
- •Глава тринадцатая высокочастотные защиты
- •13.1. Назначение и виды высокочастотных защит
- •13.2. Принцип действия направленной защиты с вч-блокировкой
3.5. Типовые схемы соединения обмоток трансформаторов тока
С
хема
соединения ТТ и обмоток реле в полную
звезду.
Трансформаторы тока устанавливаются
во всех фазах. Вторичные обмотки ТТ и
обмотки реле соединяются в звезду, и их
нулевые точки связываются одним проводом,
называемым нулевым (рис.3.11). В нулевую
точку объединяются одноименные зажимы
обмоток ТТ. Стрелками показаны условные
положительные направления первичных
и вторичных токов с учетом полярности
обмоток ТТ, начала которых обозначены
точками.
При нормальном режиме и трехфазном КЗ, как показано на рис.3.11, в реле I, II и III проходят токи фаз Ia = IA/KI; Ib =IB/KI; Ic = IC/KI, a в нулевом проводе – их геометрическая сумма:
(3.12)
которая при симметричных режимах равна нулю (рис.3.12, а).
При двухфазных КЗ ток проходит только в двух поврежденных фазах и соответственно в реле, подключенных к ТТ поврежденных фаз (рис.3.12, б), ток в неповрежденной фазе отсутствует:
IC = – IB.
Ток в нулевом проводе отсутствует как в нагрузочном (симметричном) режиме, так и при трех- и двухфазных КЗ. Однако в результате неидентичности характеристик и погрешностей ТТ в нулевом проводе протекает ток небаланса Iн.п = Iнб: в нормальном режиме он имеет значение 0,01—0,2 А, а при КЗ возрастает.
При однофазных КЗ первичный ток протекает только по одной поврежденной фазе (рис.3.12, в). Соответствующий ему вторичный ток протекает также только через одно реле и замыкается по нулевому проводу.
При двухфазных КЗ на землю (рис.3.12, г) ток проходит в двух реле, включенных на поврежденные фазы (например, В и С) (рис.3.12, г). В нулевом проводе протекает геометрическая сумма этих токов, отличная от нуля.
При двойном замыкании на землю в разных точках протекание токов в сети показано на рис.3.12, д. На участке между местами замыкания на землю условия аналогичны однофазному КЗ, а между источником питания и ближайшим к нему местом повреждения соответствуют двухфазному КЗ.
Н
улевой
провод схемы соединения в звезду является
фильтром токов НП. Ток I0
определяется
из (3.12). Токи прямой и обратной
последовательностей, как видно из
рис.3.13, в
нулевом проводе не проходят, так как
сумма векторов каждой из этих систем
равна нулю (рис.3.13, б,
в).
Токи же НП совпадают по фазе и поэтому
в нулевом проводе проходит утроенное
значение этого тока: Iн.п
= 3I0.
При нарушении (обрыве) вторичной цепи одного из ТТ в нулевом проводе возникает ток, равный току фазы, что может привести к непредусмотренному действию реле, установленному в нулевом проводе. В рассмотренной схеме реле, установленные в фазах, реагируют на все виды КЗ, а реле в нулевом проводе – только на КЗ на землю. Схема соединения ТТ и обмоток реле в звезду применяется в РЗ, действующих при всех видах КЗ.
Как рассматриваемая, так и другие схемы соединения ТТ и реле характеризуются отношением тока в реле Iр к току в фазе Iф, которое называется коэффициентом схемы:
(3.13)
Для схемы соединения в звезду kсх = 1.
Схема соединения ТТ и обмоток реле в неполную звезду. Трансформаторы тока устанавливаются в двух фазах и соединяются так же, как и в схеме соединения в звезду (рис.3.14, а). В реле I и III проходят токи соответствующих фаз Ia = IA/KI; Ic = IC/KI, а в обратном (общем) проводе (реле IV) ток равен их геометрической сумме:
(3.14)
С учетом векторной диаграммы Iа + Ic = –Ib, т.е. Iо.п равен току фазы, отсутствующей во вторичной цепи (рис. 3.14, б).
При трехфазном КЗ и в нормальном режиме токи проходят по обоим реле I и III и в обратном проводе. В случае двухфазного КЗ токи появляются в одном или двух реле (I и III) в зависимости от того, какие фазы повреждены. Ток в обратном проводе при двухфазных КЗ между фазами А и С, в которых установлены ТТ согласно рис.3.12, б с учетом того, что Ic = – Iа, равен нулю, а при замыканиях между фазами АВ и ВС он соответственно [см. (3.14)] равен: Iо.п = – Iа и Iо.п = – Ic.
В
случае однофазного КЗ
фаз (А
или С),
в которых установлены ТТ, во вторичной
обмотке ТТ и обратном проводе проходит
ток КЗ. При замыкании на землю фазы В,
в которой ТТ не установлен, токи в РЗ не
появляются. Коэффициент схемы kсх
= 1.
Схема соединения ТТ в треугольник, а обмоток реле в звезду. Вторичные обмотки ТТ, соединенные последовательно разноименными выводами (рис.3.15), образуют треугольник. Реле, соединенные в звезду, подключаются к вершинам треугольника. Из токораспределения видно, что в каждом реле протекает ток, равный геометрической разности токов двух фаз:
П
ри
симметричной нагрузке и трехфазном КЗ
в реле проходит ток, в
раз больший тока фазы и сдвинутый
относительно него по фазе на 30° (рис.3.16).
В табл.3.2 приведены значения токов при других видах КЗ в предположении, что коэффициент трансформации ТТ равен единице. Схема соединений ТТ в треугольник обладает следующими особенностями:
— токи в реле протекают при всех видах КЗ;
— РЗ по такой схеме реагируют на все виды повреждений;
— отношение тока в реле к фазному току зависит от вида КЗ;
— токи НП не выходят за пределы треугольника.
Отсюда следует, что при КЗ на землю в реле попадают только прямая и обратная последовательности, т.е. только часть тока КЗ. Описанная выше схема применяется в основном для дифференциальных и дистанционных РЗ.
Поскольку в рассматриваемой схеме ток в реле при трехфазных симметричных режимах в раз больше тока в фазе, коэффициент схемы согласно (3.13) равен:
С
хема
соединения с двумя ТТ и одним реле,
включенным на
разность
токов двух фаз.
Трансформаторы тока устанавливаются
в двух фазах (например, A
и С
на рис.3.17); их вторичные обмотки соединяются
разноименными зажимами, к которым
подключается обмотка реле. Из
токораспределения, показанного на
рис.3.17 для случая, когда по первичной
цепи проходят
положительные токи IА,
IВ,
IС,
находим,
что ток в реле Ip
равен геометрической разности токов
двух фаз Iа
и
Ic,
т.е.
(3.15)
где Ia = IA/KI; Ic = IC/KI.
При симметричной нагрузке и трехфазном КЗ разность токов Iа – Ic в раз больше тока в фазе (Iа и Ic) и, следовательно,
(3.15а)
При двухфазном КЗ АС (фазы, на которых установлены ТТ):
(3.15б)
где
При двухфазных КЗ АВ или ВС в реле поступает ток только одной фазы Iа или Ic:
(3.15в)
где Iф = Iа или Iф = Ic.
И
з
(3.15а) – (3.15в) следует, что данная схема
по сравнению со схемами полной и
двухфазной звезды имеет худшую в
раз чувствительность при КЗ между фазами
АВ
и
ВС.
В случае двухфазного КЗ между фазами В и С за силовым трансформатором с соединением обмоток звезда – треугольник ток в реле Iр = Iа – Ic оказывается равным нулю, так как токи Iа и Ic равны по значению и совпадают по фазе, что видно из токораспределения на рис.3.19.
Рассматриваемая
схема может применяться только для РЗ
от
междуфазных
КЗ в
тех случаях, когда она обеспечивает
необходимую чувствительность при
двухфазных КЗ и когда не требуется ее
действие при КЗ за трансформатором с
соединением обмотки y/Δ.
Коэффициент
схемы при симметричных режимах
Схема соединения ТТ в фильтр токов НП. Трансформаторы тока устанавливаются на трех фазах, одноименные зажимы вторичных обмоток соединяются параллельно, и к ним подключается обмотка реле КА (рис.3.18). Ток в реле равен геометрической сумме вторичных токов трех фаз:Ip = Ia + Ib + Ic = 3I0.
Рассматриваемая схема является фильтром токов НП. Ток в реле появляется только при одно- и двухфазных КЗ на землю. Поэтому схема применяется для РЗ от КЗ на землю.
Включение реле по схеме на рис.3.18 равносильно его включению в нулевой провод звезды по рис.3.11.
Анализ работы схем соединения ТТ при двухфазных КЗ за трансформаторами с соединением обмоток y/Δ или Δ/y. Особым случаем по характеру токораспределения являются двухфазные КЗ за трансформаторами с соединением обмоток y/Δ или Δ/y.
Токораспределение на стороне звезды трансформатора с соединением обмоток y/Δ (рис.3.19, а) при КЗ на стороне треугольника. Для простоты принимается, что коэффициент трансформации трансформатора NT = 1. При этом отношение линейных токов обмоток с соединением y/Δ равно 1, а токов в фазах
(3.16)
При двухфазном КЗ на стороне треугольника, например между фазами b и с (рис.3.19, а), ток в неповрежденной фазе Iа = 0, а токи в поврежденных фазах b и с равны току КЗ, т. е.
Iс = –Ib = Iк
Как
видно из рис.3.19, а,
в треугольнике ток IK
делится
на две части: одна замыкается по обмотке
фазы с
и
другая – по последовательно включенным
обмоткам фаз b
и с.
Поскольку сопротивление второй цепи в
2 раза больше, чем первой, ток в обмотке
фазы с равен
,
а в обмотках а
и b
.
Токи на стороне звезды соответствуют токам в обмотках одноименных фаз треугольника и превышают их с учетом (3.16) в раз:
(3.17)
П
ри
КЗ между фазами ab
и
са
картина
распределения токов будет аналогичной.
Таким образом, при двухфазном КЗ на
стороне треугольника трансформатора
токи на стороне звезды появляются во
всех трех фазах. В двух фазах они равны
и одинаково направлены. В третьей фазе
ток противоположен первым двум и равен
их сумме, т.е. в 2 раза больше каждого из
них.
Токораспределение на стороне треугольника при двухфазном КЗ за трансформатором с соединением обмоток Δ/y (рис.3.19, б). Распределение и соотношение токов на стороне треугольника получается аналогично предыдущему случаю на стороне звезды. Анализ условий работы максимальных токовых РЗ (МТЗ), подключенных к ТТ, соединенным по разным схемам, при КЗ за трансформатором y/Δ (или Δ/y) показывает:
1) в
схеме полной звезды (рис.3.19, б)
в одной фазе появляется ток
,
а в двух других
;
сумма токов в нулевом проводе равна
нулю. Реле I,
II,
III
действуют,
но два из них имеют в 2 раза меньшую
чувствительность, чем третье;
2) в схеме неполной звезды ток проходит по обеим фазам и обратному проводу, в последнем он равен геометрической сумме токов указанных фаз или току фазы, отсутствующей в схеме.
Если
ТТ окажутся на фазах с меньшими первичными
токами
,
то
в таком случае условие чувствительности
будет в
2 раза
хуже,
чем в схеме полной звезды. Для устранения
этого недостатка следует использовать
реле в обратном проводе, где проходит
сумма токов фаз, равная току КЗ в третьей
фазе:
;
3) в схеме с включением одного реле на разность токов двух фаз ток в реле в случае, показанном на рис.3.19, а, б, будет отсутствовать.