
- •Раздел 2
- •(70 Часов)
- •Математический анализ (274 часа) 1. Введение в анализ (20 часов)
- •2. Дифференциальное исчисление функций одной переменной (30 часов)
- •3. Применение дифференциального исчисления для исследования функций и построения графиков (26 часов)
- •4. Элементы высшей алгебры (8 часов)
- •5. Дифференциальное исчисление функций нескольких переменных (20 часов)
- •6. Интегральное исчисление функций одной переменной (40 часов)
- •7. Обыкновенные дифференциальные уравнения и системы (44 часа)
- •8. Криволинейные интегралы (6 часов)
- •9. Кратные интегралы (38 часов)
- •10. Ряды. Преобразование Фурье (42 часа)
- •Раздел 1. Матрицы и определители. Векторная алгебра. Аналитическая геометрия. Элементы линейной алгебры
- •Тема 1.1. Матрицы и определители. Системы линейных алгебраических уравнений (слау)
- •Вопросы для самопроверки
- •Тема 1.2. Векторная алгебра
- •Вопросы для самопроверки
- •Тема 1.3. Прямая и плоскость
- •Различные виды уравнения плоскости
- •Различные виды уравнений прямой в пространстве
- •Задачи, относящиеся к плоскостям
- •Задачи, относящиеся к прямым в пространстве
- •Взаимное расположение прямой и плоскости
- •Прямая линия на плоскости
- •Вопросы для самопроверки
- •Тема 1.4. Преобразование координат на плоскости. Элементарная теория линий второго порядка. (тема выносится на самостоятельное изучение)
- •Вопросы для самопроверки
- •Тема 1.5. Некоторые сведения о линейных векторных пространствах. Собственные числа и собственные векторы
- •Собственные числа и собственные векторы матрицы линейного преобразования (оператора)
- •Вопросы для самопроверки
- •Тема 1.6. Квадратичные формы. Приведение к каноническому виду уравнений линии и поверхности второго порядка
- •Уравнения центральных поверхностей второго порядка
- •Уравнения нецентральных поверхностей второго порядка
- •Уравнение плоскостей
- •Вопросы для самопроверки
- •Дополнение 1.1. Образец выполнения и оформления контрольной работы № 1 "Векторная алгебра и аналитическая геометрия. Матрицы. Элементы линейной алгебры"
- •Раздел 2. Дифференциальное исчисление функции одной переменной Тема 2.1. Введение в анализ
- •Указания
- •Вопросы для самопроверки
- •Тема 2.2. Производная и дифференциалы
- •Указания
- •Вопросы для самопроверки
- •Тема 2.3. Приложения производной
- •Указания
- •Вопросы для самопроверки
- •Тема 2.4. Комплексные числа
- •Указания
- •Вопросы для самопроверки
- •Дополнение 2.1. Образец выполнения и оформления контрольной работы № 2 "Дифференциальное исчисление функции одной переменной"
- •Раздел 3; Функции нескольких переменных Тема 3.1. Частные производные
- •Тема 3.2. Экстремум функции
- •Тема 3.3. Геометрические приложения функций нескольких переменных
- •Вопросы для самопроверки
- •Раздел 4. Интегральное исчисление функций одной переменной Тема 4.1. Неопределенный интеграл
- •Методические указания
- •1. Метод внесения под знак дифференциала
- •2. Общий метод замены переменной
- •3. Метод интегрирования по частям
- •1. Дробно-рациональные функции
- •2. Тригонометрические функции
- •3. Иррациональные функции
- •Вопросы для самопроверки
- •Тема 4.2. Определенный интеграл
- •Методические указания
- •1. Площадь плоской фигуры
- •2. Длина дуги кривой
- •3. Площадь поверхности вращения
- •4. Объем тела вращения
- •Вопросы для самопроверки
- •Тема 4.3. Несобственные интегралы
- •Методические указания
- •1. Несобственные интегралы первого рода
- •2. Несобственные интегралы второго рода
- •Вопросы для самопроверки
- •Раздел 5. Дифференциальные уравнения
- •Тема 5.1. Уравнения первого порядка
- •Указания
- •Вопросы для самопроверки
- •Тема 5.2. Уравнения высших порядков
- •Указания
- •Вопросы для самопроверки
- •Тема 5.3. Системы дифференциальных уравнений
- •Указания
- •Вопросы для самопроверки
- •Раздел 6. Кратные интегралы. Элементы теории векторного поля
- •Тема 6.1. Некоторые вспомогательные определения
- •Тема 6.2. Двойной интеграл
- •6.2.1. Определение двойного интеграла, его геометрический и физический смысл
- •6.2.2. Свойства двойного интеграла
- •6.2.3. Вычисление двойного интеграла. Изменение порядка интегрирования
- •Замена переменных в двойных интегралах.
- •Двойные интегралы в полярных координатах
- •6.2.5. Вычисление объёмов тел с помощью двойного интеграла
- •6.2.6. Вычисление площадей поверхностей с помощью двойного интеграла
- •Тема 6.3. Тройной интеграл
- •6.3.1. Определение тройного интеграла
- •6.3.2. Вычисление тройных интегралов в декартовой системе координат
- •6.3.3. Замена переменных в тройных интегралах
- •Тема 6.4. Криволинейные интегралы
- •6.4.1. Криволинейные интегралы первого рода
- •Свойства криволинейного интеграла первого рода
- •6.4.2. Криволинейные интегралы второго рода
- •Свойства криволинейных интегралов второго рода
- •6.4.3. Формула Грина
- •6.4.4. Условия независимости криволинейного интеграла от пути интегрирования
- •Тема 6.5. Элементы векторного анализа
- •6.5.1. Скалярные и векторные поля
- •6.5.2. Дифференциальные операции над векторными полями. Оператор
- •6.5.3. Циркуляция и поток векторного поля
- •6.5.4. Интегральные теоремы
- •6.5.5. Потенциальные и соленоидальные поля
- •Раздел 7. Числовые и функциональные ряды. Ряды Фурье. Интеграл Фурье
- •Тема 7.1. Числовые ряды. Ряды с положительными членами. Ряды с членами любого знака. Знакочередующиеся ряды
- •Вопросы для самопроверки
- •Тема 7.2. Функциональные ряды. Приложения рядов к приближенным вычислениям. Приближенное решение дифференциальных уравнений.
- •Вопросы для самопроверки
- •Тема 7.3. Ряды Фурье
- •Вопросы для самопроверки
- •Тема 7.4. Интеграл Фурье. Преобразование Фурье
- •Список использованной и рекомендуемой литературы
- •Учебно - методические пособия кафедры высшей математики
- •I. Аналитическая геометрия и линейная алгебра
- •П. Математический анализ
- •61070, Харьков-70, ул. Чкалова, 17
Тема 3.2. Экстремум функции
Учебники: [16], [17].
Аудиторная работа: [3, №№ 3259, 3292].
Самостоятельная работа: [3, №№ 3260, 3293].
Точка М0
называется точкой локального максимума
(минимума), если значение функции в этой
точке будет наибольшим (наименьшим) из
окрестности точки М0.
Необходимое условие существования
локального экстремума:
,
или
.
Сформулируем
достаточное условие для функции двух
переменных. Введем обозначения:
;
;
.
Если D = AC – В2 > 0, то в точке М0 – локальный экстремум, причем, если А > 0 – локальный минимум, а если А < 0 – локальный максимум.
Для функций многих переменных, т. е. 3,4,…,n, достаточным условием будет условие знакопостоянства второго дифференциала.
Второй дифференциал представляет собой квадратичную форму, а условие знакопостоянства квадратичной формы дает критерий Сильвестра.
Если d2f > 0, то в точке М0 – локальный минимум, если d2f < 0 ‑ локальный максимум.
Функция u
= f(р) имеет
условный максимум (минимум) в точке Р0,
если существует такая окрестность
точки Р0, для всех точек
Р которой
,
удовлетворяющих уравнениям связи
выполняется
неравенство
.
Задача нахождения условного экстремума сводится к исследованию на обычный экстремум функции Лагранжа.
.
Пример 3.2.1. Найти точки экстремума функции
.
Решение. Из необходимого условия экстремума найдем точки, подозрительные на экстремум:
Отсюда
,
,
.
Проверим для точки
, достаточное
условие. Для этого найдем вторые
производные:
;
;
;
Экстремум есть и т. к. А > 0, то это — локальный минимум.
Ответ. В точке
локальный минимум
.
Пример 3.2.2.
Найти экстремум функции
при условии
.
Решение. Для нахождения условного экстремума составим функцию Лагранжа:
.
Удовлетворим необходимому условию существования экстремума.
,
,
,
Разрешая эту
систему, получаем
;
;
;
.
Так как
;
;
,
то
1.
— локальный минимум;
2.
— локальный максимум.
Следовательно, в
точках
,
,
— min, а в точках
,
,
локальный максимум.
Тема 3.3. Геометрические приложения функций нескольких переменных
Учебники: [16], [17].
Аудиторная работа: [3, №№ 3412, 3416].
Самостоятельная работа: [3, №№ 3414, 3417].
Уравнение касательной плоскости, в случае явного задания поверхности, т. е. z = z(x,y) в точке М0(х0,у0) записывается
.
Если поверхность задана в неявном виде F(x,y,z), то нормаль к касательной плоскости имеет вид
Прямая называется нормальной к поверхности в точке, если она проходит через эту точку и перпендикулярна к касательной плоскости, проходящей через эту же точку.
В случае явного задания поверхности нормальная прямая имеет вид
В случае неявного задания поверхности
Пример 3.3.1. Написать уравнение касательной плоскости и нормальной прямой к поверхности х4у + 2х2у3 + xyz2 +ez =3 в точке M0(l,l,0).
Решение.
Уравнение поверхности задано в неявном
виде F(x,y,z) = х4у + 2х2у3 + xyz2 + ez – 3
= 0. Найдем
нормаль к касательной плоскости:
.
Найдем частные производные от функции F в точке М0:
,
,
,
тогда
и уравнение плоскости в точке М0
запишется
8(х – l) + 7(y – 1) + z = 0, или 8х + 7у + z = 15.
Уравнение нормальной прямой к поверхности в точке М0
.