- •Логика как наука: характеристика и специфика
- •Предмет логики как науки
- •Мышление как предмет логики
- •Этапы развития логики
- •Предмет, признак, множество, класс как составные части понятия
- •Содержание, объем и ограничение понятий
- •Виды понятий по объему и содержанию логика
- •Отношения между понятиями
- •Виды деления понятий
- •Силлогистика как логика Аристотеля
- •Дедуктивные и индуктивные умозаключения
- •Дедуктивное умозаключение и его виды
- •Связь логики с другими науками
- •Роль формализации в логике и научном познании
- •Паралогизмы и софизмы
- •Простые суждения, их виды
- •Виды суждений по модальности
- •Классификация атрибутивных суждений по количеству и качеству
- •Деление понятия как логическая операция
- •Дефиниция как логическая операция и способ представления понятий в языке
- •Закон тождества
- •1. Деструктивная критика
- •2. Конструктивная критика
- •3. Смешанная критика
Закон тождества
Предмет мысли понимается на всем протяжении суждения в одном и том же содержании его признаков. Требованиями закона тождества являются определенность и однозначность. Им запрещается многозначное использование терминов.
Любая мысль в процессе рассуждения должна иметь определенное, устойчивое содержание. Это коренное свойство мышления – его определенность – выражает закон тождества:всякая мысль в процессе рассуждения должна быть тождественна самой себе (а есть а, или а = а, где под а понимается любая мысль).
Закон тождества может быть выражен формулой
р ? р (если р, то р),
где р– любое высказывание,
? – знак импликации.
Из закона тождества следует: нельзя отождествлять различные мысли, нельзя тождественные мысли принимать за нетождественные. Нарушение этого требования в процессе рассуждения нередко бывает связано с различным выражением одной и той же мысли в языке.
Например, два суждения «Н. совершил кражу» и «Н. тайно похитил чужое имущество», выражают одну и ту же мысль (если, разумеется, речь идет об одном и том же лице). Предикаты этих суждений – равнозначные понятия: кража и есть тайное хищение чужого имущества. Поэтому было бы ошибочным рассматривать эти мысли как нетождественные.
С другой стороны, употребление многозначных слов может привести к ошибочному отождествлению различных мыслей. Например, в уголовном праве словом «штраф» обозначают меру наказания, предусмотренную Уголовным кодексом, в гражданском праве этим словом обозначают меру административного воздействия. Очевидно, употреблять подобное слово в одном значении не следует.
Отождествление различных мыслей нередко связано с различиями в профессии, образовании и т. д. Так бывает в следственной практике, когда обвиняемый или свидетель, не зная точного смысла некоторых понятий, понимает их иначе, чем следователь. Это нередко приводит к путанице, неясности, затрудняет выяснение существа дела. Отождествление различных понятий представляет собой логическую ошибку – подмену понятия, которая может быть как неосознанной, так и преднамеренной.
Соблюдение требований закона тождества имеет большое значение в работе юриста, требующей употребления понятий в их точном значении.
При разбирательстве любого дела важно выяснить точный смысл понятий, которыми пользуется обвиняемый или свидетели, и употреблять эти понятия в строго определенном смысле. В противном случае предмет мысли будет упущен и вместо выяснения дела произойдет его запутывание.
Таким образом, закон тождества представляет закон человеческого мышления, гласящий, что в процессе рассуждения значение понятий и рассуждений изменять запрещается. Они должны оставаться тождественными сами себе, иначе свойства одного объекта незаметно окажутся приписанными совершенно другому объекту.
Данное требование является справедливым не только в русле логики, но и в других науках, поэтому данный закон носит всеобщий характер.
Закон противоречия
Логическое мышление характеризуется непротиворечивостью. Противоречия разрушают мысль, затрудняют процесс познания. Требование непротиворечивости мышления выражает формально-логический закон непротиворечия: два несовместимых друг с другом суждения не могут быть одновременно истинными; по крайней мере одно из них необходимо ложно.
Этот закон формулируется следующим образом: неверно, что а и не-а (не могут быть истинными две мысли, одна из которых отрицает другую). Он выражается формулой! (р л] р) (неверно, что р и не-р одновременно истинны). Под р понимается любое высказывание, под]р – отрицание высказывания]р, знак] перед всей формулой – отрицание двух высказываний, соединенных знаком конъюнкции.
Закон непротиворечия действует в отношении всех несовместимых суждений.
Для правильного его понимания необходимо иметь в виду следующее.
Утверждая что-либо о каком-либо предмете, нельзя, не противореча себе, отрицать то же самое о том же самом предмете, взятом в то же самое время и в том же самом отношении.
Понятно, что не будет противоречия между суждениями, если в одном из них утверждается принадлежность предмету одного признака, а в другом отрицается принадлежность этому же предмету другого признака и если речь идет о разных предметах.
Противоречия не будет и в том случае, если мы что-либо утверждаем и то же самое отрицаем относительно одного лица, но рассматриваемого в разное время. Допустим, что обвиняемый Н. в начале следствия дал ложные показания, однако в конце следствия он был вынужден под тяжестью изобличающих его улик
признаться и дать истинные показания. В этом случае суждения «Показания обвиняемого Н. являются ложными» и «Показания обвиняемого Н. являются истинными» не противоречат друг другу.
Наконец один и тот же предмет нашей мысли может рассматриваться в разных отношениях. Так, о студенте Щукине можно сказать, что он хорошо знает немецкий язык, так как его знания удовлетворяют требованиям, предъявленным к поступающим в институт. Однако этих знаний недостаточно для работы в качестве переводчика. В этом случае мы вправе сказать: «Щукин плохо знает немецкий язык». В двух суждениях знание Щукиным немецкого языка рассматривается с точки зрения разных требований, следовательно, эти суждения также не противоречат друг другу.
Закон непротиворечия выражает одно из коренных свойств логического мышления – непротиворечивость, последовательность мышления. Его сознательное использование помогает обнаруживать и устранять противоречия в своих и чужих рассуждениях, вырабатывает критическое отношение ко всякого рода неточности, непоследовательности в мыслях и действиях.
Н. Г. Чернышевский подчеркивал, что непоследовательность в мыслях ведет к непоследовательности в поступках. У кого не уяснены принципы во всей логической полноте и последовательности, писал он, у того не только в голове сумбур, но и в делах чепуха. Умение вскрывать и устранять логические противоречия, нередко встречающиеся в показаниях свидетелей, обвиняемого, потерпевшего, играет важную роль в судебной и следственной практике.
Закон исключения третьего
Закон исключенного третьего действует только в отношении противоречащих (контрадикторных) суждений. Он формулируется следующим образом: два противоречащих суждения не могут быть одновременно ложными, одно из них необходимо истинно: а есть либо b, либо не-b. Истинно либо утверждение некоторого факта, либо его отрицание.Противоречащими (контрадикторными) называются суждения, в одном из которых что-либо утверждается (или отрицается) о каждом предмете некоторого множества, а в другом – отрицается (утверждается) о некоторой части этого множества. Эти суждения не могут быть одновременно ни истинными, ни ложными: если одно из них истинно, то другое ложно, и наоборот. Например, если суждение «Каждому гражданину РФ гарантируется право на получение квалифицированной юридической помощи» истинно, то суждение «Некоторым гражданам Российской Федерации не гарантируется право на получение квалифицированной юридической помощи» ложно. Противоречащим являются также два суждения об одном предмете, в одном из которых что-либо утверждается, а в другом то же самое отрицается. Например: «П. привлечен к административной ответственности» и «П. не привлечен к административной ответственности». Одно из этих суждений необходимо истинно, другое – необходимо ложно. Этот закон можно записать с помощью дизъюнкции:
р V]р,
где р – любое высказывание,
]р – отрицание высказывания р.
Подобно закону непротиворечия, закон исключенного третьего выражает последовательность, непротиворечивость мышления, не допускает противоречий в мыслях. Вместе с тем, действуя только в отношении противоречащих суждений, он устанавливает, что два противоречащих суждения не могут быть не только одновременно истинными (на что указывает закон непротиворечия), но также и одновременно ложными: если ложно одно из них, то другое необходимо истинно, третьего не дано.
Конечно, закон исключенного третьего не может указать, какое именно из данных суждений истинно. Этот вопрос решается другими средствами. Значение закона состоит в том, что он указывает направление в отыскании истины: возможно только два решения вопроса, причем одно из них (и только одно) необходимо истинно.
Закон исключенного третьего требует ясных, определенных ответов, указывая на невозможность отвечать на один и тот же вопрос в одном и том же смысле и «да», и «нет», на невозможность искать нечто среднее между утверждением чего-либо и отрицанием того же самого.
Большое значение имеет этот закон в юридической практике, где требуется категорическое решение вопроса. Юрист должен решать дело по форме «или – или». Данный факт либо установлен, либо не установлен. Обвиняемый либо виновен, либо не виновен. Право знает только: «или – или». Таким образом, закон исключенного третьего, конкретизирующий предыдущий принцип (два противоречащих суждения не могут быть одновременно ложными, одно из них обязательно истинно), тоже зависит от содержания рассуждения. Должна быть установлена либо истина, либо ложность данного суждения. К сожалению, это не всегда возможно, что показали современные исследования проблем бесконечных классов.
Закон достаточного основания
Требование доказанности, обоснованности мысли выражает закон достаточного основания: всякая мысль признается истинной, если она имеет достаточное основание. Если есть b, то есть и его основание а.
Достаточным основанием мыслей может быть личный опыт человека. Истинность некоторых суждений подтверждается путем их непосредственного сопоставления с фактами действительности. Так, для человека, явившегося свидетелем преступления, обоснованием истинности суждения «Н. совершил преступление» будет сам факт преступления, очевидцем которого он был. Но личный опыт ограничен. Поэтому человеку в своей деятельности приходится опираться на опыт других людей, например на показания очевидцев того или иного события. 3 Истинность законов, аксиом подтверждена практикой человечества и не нуждается поэтому в новом подтверждении. Для подтверждения какого-либо частного случая нет необходимости обосновывать его при помощи личного опыта. Если, например, нам известен закон Архимеда (каждое тело, погруженное в жидкость, теряет в своем весе столько, сколько весит вытесненная им жидкость), то нет никакого смысла погружать в жидкость какой-либо предмет, чтобы выяснить, сколько он теряет в весе. Закон Архимеда будет достаточным основанием для подтверждения любого частного случая.
Достаточным основанием какой-либо мысли может быть любая другая, уже проверенная и установленная мысль, из которой с необходимостью вытекает истинность данной мысли.
Если из истинности суждения а следует истинность суждения b, то а будет основанием для b, а b – следствием этого основания.
Связь основания и следствия является отражением в мышлении объективных, в том числе причинно-следственных, связей, которые выражаются в том, что одно явление (причина) порождает другое явление (следствие). Однако это отражение не является непосредственным. В некоторых случаях логическое основание может совпадать с причиной явления (если, например, мысль о том, что число дорожно-транспортных происшествий увеличилось, обосновывается указанием на причину этого явления – гололед на дорогах). Но чаще всего такого совпадения нет. Суждение «Недавно был дождь» можно обосновать суждением «Крыши домов мокрые»; след протекторов автомобильных шин – достаточное основание суждения «В данном месте прошла автомашина». Между тем мокрые крыши и след, оставленный автомашиной, – не причина, а следствие указанных явлений. Поэтому логическую связь между основанием и следствием необходимо отли– 1 чать от причинно-следственной связи.
Обоснованность – важнейшее свойство логического мышления. Во всех случаях, когда мы утверждаем что-либо, убеждаем в чем-либо других, мы должны доказывать наши суждения, приводить достаточные основания, подтверждающие истинность наших мыслей. В этом состоит коренное отличие научного мышления от мышления ненаучного, которое характеризуется бездоказательностью, способностью принимать на веру различные положения и догмы. Это особенно характерно для религиозного мышления, опирающегося не на доказательство, а на веру.
Характеристика умозаключения как формы мышления
Умозаключение – это форма мышления, в которой из одного или нескольких суждений на основании определенных правил вывода получается новое суждение.
Структура всякого умозаключения подразумевает посылки (исходные суждения), заключения (выводы из этих посылок) и логическую связь между посылками и заключением. Из этого можно сделать следующий вывод, что в посылках и умозаключении речь должна идти об одной и той же предметной области. Логический переход от посылок к заключению называется выводом. Все металлы проводят электрический ток. Железо – металл.
Железо проводит электрический ток. Некоторые истины устанавливаются без всяких рассуждений, путем простого усмотрения того, что показывает наблюдение, или того, что представляется очевидным для мысли. Так, например: «Сейчас небо пасмурно». Истинность данного суждения доказывать не приходится, так как она очевидна. Целью умозаключения является выведение новой истины из ранее известной. Любое истинное умозаключение ведет мысль дальше того, что уже известно из посылок, присоединяет к ранее установленным истинам истину новую.
Умозаключение есть извлечение новой истины из ранее признанных и известных истин.
Умозаключение не просто присоединяет новую истину к известным, а выводит новую истину из посылок таким образом, что ее присоединение к посылкам сознается как совершенно необходимое и обязательное для мысли.
Так как умозаключение дает в выводе новую мысль и раскрывает необходимость связи между посылками и выводом, то умозаключение является очень важной формой логического мышления.
Связь между понятиями, раскрываемая умозаключением, необходима. Если посылки истинны, а в ходе умозаключения не сделано никакой логической ошибки, то вывод всегда будет истинным. Умозаключение раскрывает необходимость связи, существующей между посылками и выводом.
Непосредственными умозаключениями называются дедуктивные умозаключения, делаемые из одних посылок. К ним относятся следующие: превращение, обращение, противопоставление предикату и умозаключения по «логическому квадрату».
Превращение – вид непосредственного умозаключения, при котором изменяется качество посылки без изменения ее количества, при этом предикат заключения является отрицанием предиката посылки. Схема превращения: S есть Р; S не есть не-Р.
Обращением называется такое непосредственное умозаключение, в котором в заключении субъектом является предикат, а предикатом – субъект исходного суждения, т. е. происходит перемена мест субъекта и предиката при сохранении качества суждения. Схема обращения: S есть Р; Р есть S.
Противопоставление предикату – это непосредственное умозаключение, при котором предикатом является субъект, субъектом – понятие, противоречащее предикату исходного суждения, и связка меняется на противоположную. Его схема: S есть Р; не-Р не есть S.
Умозаключение по «логическому квадрату» – это определение истинности или ложности одного суждения из истинности или ложности другого.
Характеристика сложных суждений
Сложные суждения образуются из простых путем их соединения. Сложные суждения могут быть истинными или ложными, истинность или ложность которых зависит прежде всего от истинности или ложности составляющих его простых и иных суждений.
В сложных суждениях, в отличие от простых, одновременно раскрывается не одна, а несколько связей между предметами мысли. Основными структурообразующими элементами выступают самостоятельные суждения.
Не всякое сложное суждение выражается сложным предложением, но всякое сложное предложение выражает сложное суждение.
Выделяют следующие виды сложных суждений: 1)соединительные (конъюнкция);
2) разделительные (дизъюнкция);
3) условные (импликация);
4) эквивалентные. Конъюнкция – образуется из нескольких простых,
связанных логической связкой «и». Например, «Никто не забыт и ничто не забыто» – А В. (Где А – Никто не забыт; В – ничто не забыто. А и В – члены конъюнкции).
Для конъюнкции свойственна взаимозаменяемость положения членов конъюнкции: А В, или В А.
Дизъюнкция состоит из нескольких простых, связанных логической связкой «или»: А V В.
Выделяют две разновидности разделительного суждения:
1) нестрогую (слабую) дизъюнкцию;
2) строгую (сильную) дизъюнкцию.
Слабая дизъюнкция – объединяемые ею суждения не исключают друг друга, т. е. вместо «или» можно поставить «и» (символ V). Слабая дизъюнкция истинна в тех случаях, когда истинно одно из суждений (или оба), и ложна, когда оба суждения ложны.
Сильная дизъюнкция – образуется логической связкой «либо», и ее составляющие исключают друг друга. Строгая дизъюнкция истинна только тогда, когда одно из суждений истинно, а другое – ложно.
Импликация – суждения объединяются на основе логической связки «если... то», например: «Если будет хорошая погода, то соревнования состоятся».
Эквивалентные суждения – это суждения с взаимной условной зависимостью, выражаемые логической связкой «если и только если..., то...». Например, если и только если человек достиг пенсионного возраста, то он имеет право на получение пенсии по возрасту.
Между сложными суждениями существуют определенные отношения, они могут быть совместимыми и несовместимыми.
Совместимые суждения – это суждения, которые могут быть одновременно истинными.
Выделяют три вида совместимости сложных суждений:
1) эквивалентность;
2) частичная совместимость;
3) подчинение.
Эквивалентными являются суждения, являющиеся истинными или ложными одновременно.
Частично совместимыми являются суждения, которые могут быть одновременно истинными, но не могут быть одновременно ложными.
К подчиненным относятся такие суждения, в которых при истинности подчиняющего подчиненное всегда истинно.
Суждения, которые одновременно не могут быть истинными, являются несовместимыми.
Выделяют два вида несовместимости: 1) противоположность; 2) противоречие.
Противоположность – отношение между суждениями, которые одновременно не могут быть истинными, но могут быть одновременно ложными.
Противоречащими являются суждения, которые не могут быть одновременно истинными и ложными.
Аргументация и доказательство
Логические ошибки в доказательстве можно разделить на относящиеся к тезису, к аргументам и к их связи.
Формальная ошибка имеет место тогда, когда умозаключение не опирается на логический закон и заключение не вытекает из принятых посылок. Например: «Если я навещу дядю, он подарит мне фотоаппарат, я продам его и куплю велосипед: значит, если я навещу дядю, я продам его и куплю велосипед». Данное умозаключение не опирается на закон логики и неправильно. Ошибка заключается в том, что местоимение «его» может указывать на разные предметы. В данном случае оно должно указывать на фотоаппарат, но выходит так, что на самом деле оно относится к дяде.
Характерной ошибкой в отношении тезиса является подмена тезиса, неосознанное или умышленное замещение его в ходе доказательства каким-то другим утверждением. Подмена тезиса ведет к тому, что доказывается не то, что требовалось доказать. В данном случае тезис может сужаться и он остается недоказанным.
Довольно распространенной ошибкой является круг в доказательстве: справедливость доказываемого положения обосновывается посредством этого же положения, высказанного, возможно, в несколько иной форме. Если за основание доказательства принимается то, что еще нужно доказать, обосновываемая мысль выводится из самой себя и получается не доказательство, а пустое хождение по кругу.
Правила, относящиеся к аргументам:
1) аргументы не должны противоречить друг другу;
2) аргументы должны подтверждать тезис;
3) аргументы должны быть суждениями.
При нарушении вышеперечисленных правил возникают следующие ошибки в основаниях доказательства:
1) ложность оснований;
2) предвосхищение оснований. В качестве аргументов приводится такое положение, которое само нуждается в доказательстве;
3) правила, относящиеся к демонстрации. Формализованное доказательство – это доказательство, записанное на специальном искусственном – формализованном – языке. Он имеет точно установленную структуру, благодаря чему процесс доказательства сводится к элементарным операциям со знаками. Формализованное доказательство – это идеальное и неоспоримое доказательство.
Формализация может осуществляться с разной степенью полноты. Полная формализация теории имеет место тогда, когда совершенно отвлекаются от содержательного смысла исходных понятий и положений теорий и перечисляют все правила логического вывода, используемые в доказательствах. В формализованной теории доказательство не требует обращения к каким-либо интуитивным представлениям. Оно является последовательностью формул, каждая из которых либо аксиома, либо получается из аксиомы по правилам вывода. Проверка такого доказательства превращается в механическую процедуру и может быть передана вычислительной машине.
Формализация играет существенную роль в уточнении научных понятий. Многие проблемы не могут быть не только решены, но даже сформулированы и поставлены, пока не будут формализованы связанные с ними рассуждения.
Доказательство – процедура установления истинности некоторого утверждения путем приведения других утверждений, истинность которых известна.
Процесс обоснования истинности называется доказыванием, или аргументацией.
Главным элементом доказательства является тезис. Тезисом является суждение, истинность которого подлежит обосновыванию в процессе доказывания. В качестве тезиса может выступать любое суждение, истинность или ложность которого предстоит установить.
Следующим элементом является аргумент, или основание.
Аргументы – это исходные положения, с помощью которых обосновывают тезис. Они являются базисом основания. Аргументами могут выступать любые суждения, если они истинны и имеют отношение к тезису, истинность которого необходимо доказать.
И последним элементом является демонстрация доказательства, т. е. умозаключение, с помощью которого тезис и аргумент логически связываются.
Все доказательства подразделяются на прямые и косвенные. При прямом доказательстве задача состоит в том, чтобы подыскать такие убедительные аргументы, из которых по логическим правилам получается тезис.
В построении прямого доказательства можно выделить два связанных между собой этапа: отыскание тех утверждений, которые способны быть убедительными аргументами для доказываемого положения; установление логической связи между найденными аргументами и тезисом.
Косвенное доказательство устанавливает справедливость тезиса тем, что вскрывает ошибочность противоположного ему допущения (антитезиса). Поскольку косвенное доказательство использует отрицание доказываемого положения, то его еще называют доказательством от противного.
Также доказательства можно разделить на две группы в зависимости от того, что в них исследуется: истинность содержания и правильность логической связи или происхождение суждений.
Доказательства, в которых исследуется истинность или ложность содержания, а также логическая связь являются доказательствами по существу. В этих доказательствах ничего не требуется, кроме рассмотрения оснований по существу их содержания и кроме рассмотрения логической связи между основаниями и тезисом.
Те доказательства, в которых исследуется происхождение суждения, называются доказательствами по источнику происхождения суждений, или генетическими.
Такой вид доказывания, как дедуктивное, означает обосновать, что он, данный тезис, является следствием истинных аргументов – аксиом, законов, принципов.
В отличие от дедуктивной аргументации, в недедуктивной тезис является следствием аргументов, а аргументы, как правило, являются следствием гипотезы.
Недедуктивную аргументацию можно разделить на два вида:
1) индуктивное обоснование;
2) доказательство по аналогии.
Индуктивным обоснованием является переход от аргументов к тезисам.
Доказательство по аналогии – это обоснование тезиса, утверждающего свойства единичного явления с помощью аргументов, которые содержат информацию о другом явлении, сходном с первым в существенных признаках.
Критика и опровержение
Опровержение – это рассуждение, направленное против выдвинутого положения и имеющее своей целью установление его ошибочности или недоказанности.
Наиболее распространенный прием опровержения – выведение из опровергаемого утверждения следствий, противоречащих истине. Если одно логическое следствие некоторого положения неверно, ошибочным будет и само это положение.
Опровержение имеет три вида: 1)критика тезиса – это логическая операция, целью которой является показать ложность выставленного тезиса. Тезис признается ложным, если оппонент отстаивает свое утверждение, но заведомо знает о том, что оно не соответствует действительности. Тезис является ошибочным, если оппонент заблуждается относительно действительности утверждаемого им тезиса.
Опровержение тезиса в свою очередь может быть прямым или косвенным. Опровержение является прямым, если аргументация протекает следующим образом: в первую очередь допускают истинность выдвинутого положения, при этом выводят из него логические следствия. Если при сопоставлении данных следствий с фактами выяснится, что они противоречат истинным данным, то их признают несостоятельными.
При косвенном опровержении тезиса внимание сосредоточивается на доказательстве своего тезиса, которое в свою очередь будет противоречить тезису оппонента.
Если положение выдвигается с каким-либо обоснованием, операция опровержения может быть направлена против обоснования. В этом случае нужно показать, что приводимые аргументы ошибочны: вывести
из них следствия, которые окажутся в итоге несостоятельными, или доказать утверждения, противоречащие аргументам.
Следует иметь в виду, что опровержение доводов, приводимых в поддержку какого-либо положения, не означает неправильность самого этого положения. Утверждение, являющееся по сути дела верным, может отстаиваться с помощью ошибочных или слабых доводов. Выявив это, демонстрируется надежность предлагаемого обоснования, а не ложность утверждения;
2) критика аргументов. Данная логическая операция направлена на обоснование ложности аргумента. Она может выражаться в том, что оппонент может указывать на неточное изложение фактов, выражать в них сомнение.
Если ложность аргументов будет доказана, то тезис будет необоснованным и будет нуждаться в дополнительной аргументации;
3) критика демонстраций. Данная логическая операция указывает на отсутствие логической связи между тезисом и аргументами.
Особое значение при опровержении имеют факты. Ссылка на верные и неоспоримые факты, противоречащие ложным или сомнительным утверждениям оппонента, – самый надежный и успешный способ опровержения. Реальное явление или событие, не согласующиеся со следствиями какого-либо универсального положения, опровергает не только эти следствия, но и само положение.
Опровержение может быть направлено на саму связь аргументов и доказываемого положения. В этом случае нужно показать, что тезис не вытекает из доводов, приведенных в его обоснование. Если между аргументами и тезисом нет логической связи, то нет и доказательства тезиса с помощью указанных аргументов.
Критика — это логическая операция, направленная на разрушение ранее состоявшегося процесса аргументации.
По форме выражения критика бывает неявной и явной.
Неявная критика — это скептическая оценка позиции пропонента без конкретного анализа недостатков и точного указания на слабые места.
Явная критика — указание на конкретные недостатки, выявленные в аргументации пропонента.
По направленности явная критика может быть трех видов: деструктивная, конструктивная и смешанная.
