
- •Способы получения низких температур
- •Термодинамические основы холодильных машин Основные понятия термодинамики
- •Термодинамические диаграммы состояния
- •Термодинамические процессы и обратный цикл
- •Принципиальные схемы и циклы холодильных машин Классификация холодильных установок
- •Абсорбционная холодильная машина
- •Цикл парокомпрессионной холодильной машины с влажным ходом
- •Сухой ход компрессора
- •Принципиальная схема и цикл одноступенчатой аммиачной холодильной машины
- •Принципиальная схема и цикл одноступенчатой фреоновой холодильной машины
- •Рабочие вещества паровых холодильных машин и хладоносители. Общие сведения.
- •Области применения хладагентов.
- •Компрессоры холодильных машин Классификация компрессоров
- •Теплообменные аппараты, вспомогательное оборудование холодильных машин и установок Классификация теплообменных аппаратов
- •Конденсаторы
- •Безмашинные способы охлаждения Охлаждение водным льдом
- •Льдосоляное охлаждение
- •Охлаждение холодоаккумуляторами с эвтектическим раствором
- •Охлаждение сухим льдом
- •Классификация систем охлаждения холодильных камер
- •Системы непосредственного охлаждения
- •Системы охлаждения с промежуточным теплоносителем
- •Пуск, обслуживание, регулирование режима и остановка холодильной машины
Способы получения низких температур
1. Охлаждение с использованием процессов фазовых переходов. Среди процессов изменения агрегатного состояния вещества в результате теплообмена можно выделить три процесса для получения охлаждающего эффекта. Это - плавление, сублимация, и кипение.
Для пищевых продуктов применяют ледяное и льдосоляное охлаждение. Ледяное осуществляют при помощи водного льда, заготовленного в зимнее время в водоемах или искусственно полученного в ледогенераторах. Для получения более низких применяют льдосоляное охлаждение или процесс сублимации сухого льда.
Сухой лед широко применяют в промышленности, медицине, при транспортировании, в общественном питании и торговле.
Кипение жидкости при низкой температуре или при пониженном атмосферном давлении, используется главным образом в холодильной технике для получения искусственного машинного холода.
Кипение – основной процесс происходящий в холодильной машине. Наряду с процессами фазового перехода, происходящими с поглощением теплоты, используют способы охлаждения, основанные на других физических эффектах.
2. Охлаждение при адиабатическом расширении. При расширении сжатого газа (воздуха), протекающего без теплообмена с окружающей средой, совершается работа. В результате уменьшается внутренняя энергия расширяющегося тела и понижается его температура. Так для воздуха, при понижении давления, в результате адиабатического расширения от 0,4 до 0,1МПа, температура меняется от 20С до -73С.
Такой метод получения низких температур используется в криогенной технике и воздушных холодильных машинах.
3. Охлаждение при адиабатическом дросселировании. Адиабатическое дросселирование – это необратимое расширение газа (жидкости) при прохождении через устройство с малым проходным сечением (вентиль, кран, дроссель и др.). Процесс протекает быстро, поэтому теплообмена практически нет. При дросселировании совершается работа на изменение сил взаимодействия молекул и преодоления трения в сужающемся устройстве. При этом снижается температура рабочего вещества, а также давление. Это явление называют эффектом Джоуля-Томпсона, его широко применяют в холодильной технике. Адиабатическое дросселирование жидкости более эффективно, ее температура значительно понижается за счет частичного парообразования.
4. Охлаждение с помощью вихревого эффекта. При подаче сжатого воздуха, имеющего температуру окружающей среды, по тангенсальному вводу через сопло в трубу, скорость вращения воздуха обратно пропорциональна радиусу вращения. Центральная часть потока будет обладать большей скоростью, чем периферийная. В связи с этим температура воздуха на периферии стенки трубы будет выше, а в центре – ниже, чем температура подаваемого воздуха в трубу.
Разделяя периферийную и центральную части потока, можно получить потоки с низкой и высокой температурой.
Это явление называется эффектом Ранке, в честь французского инженера Ранке, предложившего этот способ.
5. Охлаждение с помощью термоэлектрического эффекта. Этот способ основан на эффекте Жана Пельтье, открытом в 1838 г. При пропускании электрического тока через термоэлемент, состоящий из полупроводников 1 и 2, спаянных металлическими пластинами 3 и 4.
Рис. 5. 1,2 – полупроводники; 3,4 – спаи термоэлемента
Если
через систему пропустить постоянный
электрический ток, то на одном спае
температура понизится до
,
называемом холодным спаем, поглощающим
теплоту от охлаждаемого тела, другой
спай нагревается до
и отдает теплоту в окружающую среду.
Термоэлементы могут быть объединены в
батареи. Разность температур между
спаями достигает 60°С,
что позволяет использовать этот способ
в различных отраслях техники. Эти
устройства портативны, бесшумны, просты
и надежны, отсутствие движущихся частей.
Недостаток – высокая стоимость и большой
расход электроэнергии.