
- •1.Що в теорії ймовірностей розуміють під терміном «Закон великих чисел»? Записати нерівність а. Чебишова. Пояснити зміст букв.
- •2. Дати означення системи випадкових величин.
- •4. Для перевірки правильності основної статистичної гіпотези Но необхідно:
- •11. Дати означення емпіричної та теоретичної частот, записати формулу обчислення теоретичних частот для нормально розподіленої генеральної сукупності.
- •13. Сформулювати основні теореми закону великих чисел: а) Бернуллі б)Чебишова. Центральну граничну теорему. Пояснити зміст позначень.
- •14. Дати означення вибіркових: а)моди б) медіани в) початкового моменту г) центрального моменту д) асиметрії е) ексцесу
- •16. Запис. Осн. З-ни розподілу д.В.В.: а)біноміальн.; б)Пуассона; в)геометричн.
- •17. Навести схему та приклад перевірки гіпотези про значущість вибіркового коефіцієнта кореляції.
- •18. Запис. Осн. З-ни розподілу н.В.В.: а)рівномірн; б)нормальн; в)показников.
- •20. Дати означ. Генеральн. Та вибірков. Середніх. Довести незміщенність вибірков. Середньої як оцінки генеральн. Середн. Сформулюв. Вл-ть стійкості вибіркових середніх.
- •21.Що є предметом теорії ймовірностей? Дати визначення підмножини, скінченної, нескінченної, зліченої і незліченої множин. Навести приклади.
- •22.Дати означення варіанти, варіаційного ряду,частоти,відносної частоти,статистичного розподілу вибірки. Навести приклади.
- •24.Дати означення рівня значущості та потужності статистичного критерію. Пояснити способи знаходження одностороньої та двустороньої областей, імовірностний зміст рівня значущості.
- •25. Дати означення сполучення та розміщення із n елементів по k, переставлення із n елементів. Записати позначення та формули для обчислення числа цих сполук. Навести приклади.
- •27. Дати означення точкової та інтервальної оцінок параметра генеральної сукупності, точності, надійності (надійної імовірності), інтервальної оцінки, надійного інтервалу.
- •29. Навести схему та приклад перевірки гіпотези про вид закону розподілу генеральної сукупності за даними вибірки.
- •31.Дати означення статистичної оцінки параметру розподілу генеральної сукупності незміщеної, ефективної, обґрунтованої оцінок
- •32. Сформулювати теореми: а) про імовірність суми 2 подій; б) про імовірність суми 2 несумісних подій; в) про імовірність суми декількох попарно несумісних подій. Навести приклади
- •34. Вивести формули для обчислення параметрів вибіркового рівняння лінійної регресії. Пояснити зміст позначень. Навести приклади
- •35. Записати формули: а)повної імовірності; б) Байєса. Пояснити зміст позначень. Навести приклади.
- •37. Дати означення генеральної сукупності, вибіркової сукупності (вибірки), об’єму вибірки, повторної, безповторної та репрезентативної вибірок.
- •39. Дати визначення: а)полігону; б)гістограми; в)кумуляти частот та частостей. Назвати їх імовірнісний зміст. Навести приклади побудови.
- •40. Дати означення випадкової величини (в.В.), дискретної (д.В.В.) та неперервної (н.В.В.) випадкових величин.
- •41.Дати означення статистичної гіпотезти. Назвати основні види статистичних гіпотез. Дати означення нульової та альтернативної гіпотез. Дати означення помилки першого роду. Навести приклади.
- •44.Дати означення вибіркових: а)моди; б) медіани; в)початкового моменту; г)центрального моменту; д)асиметрії; е)ексцесу. Записати формули, для їх обчислення. Пояснити зміст позначень, навести
- •47. Вивести рівняння лінійної середньоквадратичної регресії y та X (y на X). Пояснити зміст позначень. Дати означення коефіцієнту регресії, залишкової дисперсії та пояснити, що вони характеризують.
- •48. Дати означення генеральної та вибіркової середніх. Довести незміщеність вибіркової середньої як оцінки генеральної середньої. Сформулювати властивість стійкості вибіркових середніх.
- •49. Записати випадкові величини, які мають розподіли: а) Пірсона; б)Стьюдента; в)Фішера. Записати функції щільності розподілу ймовірностей для цих розподілів. Пояснити зміст позначень.
- •51. Записати формули для обчислення математичного сподівання та дисперсії : а) функції д.В.В.; б) фцнкції н.В.В. Пояснити зміст позначень. Навести приклади.
- •52. Дати означення емпіричної та теоретичної частот, записати формулу для обчислення теоретичних частот для розподілу Пуассона.
44.Дати означення вибіркових: а)моди; б) медіани; в)початкового моменту; г)центрального моменту; д)асиметрії; е)ексцесу. Записати формули, для їх обчислення. Пояснити зміст позначень, навести
приклади.
Модой называют варианту, которая имеет наибольшую частоту.
При графічному способі зображення закону розподілу в.в., значення в.в. імовірність якого найбільша називають модою.
Например, для ряда варианта….1 4 7 9
Частота… 5 1 20 6
Мода равна7.
Медианой называют варианту.которая дельт вариационный ряд на 2 части, равные по числу вариант.
Например для ряда, 2 3 5 6 7 медиана равна 5.
Початковым моментом порядку к. в. в. Х називають математичне сподівання величини Хк і позначають
Центральнім моментом порядку к.в.в. Х наз. математичне сподівання величини і позначають
Асиметріею або коефіцієнтом асиметрії називається величина
центральній момент третього порядку
середне квадратичне відхилення.
Якщо Аs =0 (Аs=0), то розподіл симетричний(асиметричний);
Якщо Аs >0 (Аs<0), то асиметрія правостороння (лівостороння).
Ексцес в.в. характеризує плосковерхість чи гостроверхість розподілу, порівняно з нормативним розподілом з тим же значенням дисперсії.
Якщо Ех >0 (Ex<0),то розподіл гостроверхній (плосковерхній)
45.Навести основні властивості кореліаційного моменту та коефіцієнту кореляції. Дати означення корельованості(некорельованості) двохв.в. пояснити різницю і зв'язок між корельованістю(некорельованістю) і залежністю (незалежністю) двох в.в.
Корреллиационный момент служит для характеристики связи между величинами X и Y. М равен нулю, если X и Y независимы, следовательно, если М не равен нулю, то X и Y- зависимые случайные величины.
Величина коэф.корел. не зависит от выбора единицы измерения случайных величин. В этом состоит преимущество коэф.корел. перед кореллиационным моментом КК независимых случайных величин X и Y не превышает среднего геометрического их дисперсий , абсолютная величина не превышает еденицы.
Властивості кор.. моменту:1) кор. Момент 2 незалежних в.в.X та Y=0. І навпаки, якщо кор. Момент не рівний 0, то X та Y-залежні в.в.2) абсолютна величина кор.моменту 2 в.в.X та Y не перевищує середнього геометричного їх дисперсій.
Властивості коеф.кореляції:1){rxy}<=1; 2)якщо X та Y незалежні, то rxy=0;3) якщо між X та Y є лінійна залежність Y=a×X+b- сталі, то {rxy}=1.
Корельованими наз. 2 d/d/?zroj їх µxy відрізняється від 0.
Некорельованим наз. 2 d/d/?zroj їх µxy=0.
Две случайные величины X и Y наз. Корел.,если их корел.момент отличен от нуля, X и Y называют некор.величинами , если их кор.момент равен нулю. Две кор.величины,если их кор.момент равен 0. Две кор.величины также и зависимы .
Зв'язок між корел-ю (некорел-ю) та залежністю: якщо X ,Y , некорельовані µxy=0, то залежність невідома; якщо X ,Y корельовано, то вони залежні; якщо X, Y незалежні, то вони некорельовані X, Y=0; якщо X, Y залежні, то вони можуть бути як корельованими так і декор. µxy-індикатор залежності і незалежності X, Y.
Різниця: із незалежності 2 величин слідує їх некорельованість,але із некорельованості не можна зробити висновок про незалежність цих величин.