Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
TER_VER.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
2.95 Mб
Скачать

1.Що в теорії ймовірностей розуміють під терміном «Закон великих чисел»? Записати нерівність а. Чебишова. Пояснити зміст букв.

Граничні теореми теорії ймовірностей встановлюють відповідність між теоретичними та дослідними характеристиками випадкових величин або випадкових подій при великій кількості випробувань. Граничні теореми описують також граничні закони розподілу.

Граничні теореми, які встановлюють відповідність між теоретичними та дослідними характеристиками випадкових подій, об’єднують загальною назвою – закона великих чисел.

Перша форма нерівності Чебишова.

Для довільної випадкової величини Х, яка приймає невід’ємні значення та має скінчене математичне сподівання Р(Х≥1)≤М(Х).

Якщо Х – дискретна випадкова величина, то Р(Х≥1) =

Якщо Х – неперервна випадкова величина, f(x) – щільність її імовірностей, то

Р(Х≥1) = .

Друга форма нерівності Чебишова.

Якщо випадкова величина Х має скінчені математичне сподівання та дисперсію, то для довільного ε>0 має місце нерівність

2. Дати означення системи випадкових величин.

Системою випадкових величин Х1, Х2,...,Хn називають сукупність цих ВВ, які вивчаються або розглядаються одночасно(СВВ).(Х;У), (Х;У;Z)...

Систему n ВВ (Х1, Х2,...,Хn) можна розглядати як випадкову точку в n-вимірному просторі з координатами (Х1, Х2,...,Хn) або як випадковий вектор, напрямлений з початку координат у точку М (Х1,Х2,...,Хn)

Законом розподілу ДВВ називається перелік можливих значень цієї величини (хі, уk) та їх імовірностей р(хі, уk), і=1,2,..., n; k=1,2,...,m

Найбільш часто закон розподілу двв задають у вигляді таблиці з двома входами. Закон розподілу двв дозволяє отримати закони розподілу кожної компоненти.

3.коефіцієнт кореляції –це кількісна характеристика залежності випадкових величин X та Y і часто використовується в статистиці

r XY=

Випадкові величини та звуть некорельованими якщо їх кореляційний момент або коефіцієнт кореляції дорівнює нулю.

Властивості:1. ! rXY !≤1

2.Якщо X та Y незалежні то r XY=0

3.якщо між X та Y є лінійна залежність Y=aX+b де а і b–постійні , то !rXY !=1

Вибірковий коефіцієнт кореляції визначається , де x,y –варіанти ознак X та Y, nxy – частота пари варіант, n –обєм вибірки , σxy –вибіркові середні квадратичні відхилення, , - вибіркові середні. Відомо, що якщо величини Y та X не залежать, то коефіцієнт кореляції r=0, якщо r= -1, то Y та Х зв´язані лінійною функцією начальною залежністю, звідси слідує, що коефіцієнт кореляції вимірює силу лінійного зв´язку між Y та Х. Вибірковий коефіцієнт кореляції r – являється оцінкою коефіцієнта кореляції r генеральної сукупності і тому слугує для виміру лінійного зв´язку між величинами кількісними ознаками Х та Y. Якщо вибірка має достатньо великий об´єм та добре представляє генеральну сукупність, то заключення про щільність лінійної залежності між ознаками, яке отримано за даними вибірки, в відомій степені може бути розповсюджено і на генеральну сукупність. Приклад – для оцінки коефіцієнта кореляції ry нормально розподіленої генеральної сукупності (при np=50) можна скористатися формулою:

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]