
- •1.Що в теорії ймовірностей розуміють під терміном «Закон великих чисел»? Записати нерівність а. Чебишова. Пояснити зміст букв.
- •2. Дати означення системи випадкових величин.
- •4. Для перевірки правильності основної статистичної гіпотези Но необхідно:
- •11. Дати означення емпіричної та теоретичної частот, записати формулу обчислення теоретичних частот для нормально розподіленої генеральної сукупності.
- •13. Сформулювати основні теореми закону великих чисел: а) Бернуллі б)Чебишова. Центральну граничну теорему. Пояснити зміст позначень.
- •14. Дати означення вибіркових: а)моди б) медіани в) початкового моменту г) центрального моменту д) асиметрії е) ексцесу
- •16. Запис. Осн. З-ни розподілу д.В.В.: а)біноміальн.; б)Пуассона; в)геометричн.
- •17. Навести схему та приклад перевірки гіпотези про значущість вибіркового коефіцієнта кореляції.
- •18. Запис. Осн. З-ни розподілу н.В.В.: а)рівномірн; б)нормальн; в)показников.
- •20. Дати означ. Генеральн. Та вибірков. Середніх. Довести незміщенність вибірков. Середньої як оцінки генеральн. Середн. Сформулюв. Вл-ть стійкості вибіркових середніх.
- •21.Що є предметом теорії ймовірностей? Дати визначення підмножини, скінченної, нескінченної, зліченої і незліченої множин. Навести приклади.
- •22.Дати означення варіанти, варіаційного ряду,частоти,відносної частоти,статистичного розподілу вибірки. Навести приклади.
- •24.Дати означення рівня значущості та потужності статистичного критерію. Пояснити способи знаходження одностороньої та двустороньої областей, імовірностний зміст рівня значущості.
- •25. Дати означення сполучення та розміщення із n елементів по k, переставлення із n елементів. Записати позначення та формули для обчислення числа цих сполук. Навести приклади.
- •27. Дати означення точкової та інтервальної оцінок параметра генеральної сукупності, точності, надійності (надійної імовірності), інтервальної оцінки, надійного інтервалу.
- •29. Навести схему та приклад перевірки гіпотези про вид закону розподілу генеральної сукупності за даними вибірки.
- •31.Дати означення статистичної оцінки параметру розподілу генеральної сукупності незміщеної, ефективної, обґрунтованої оцінок
- •32. Сформулювати теореми: а) про імовірність суми 2 подій; б) про імовірність суми 2 несумісних подій; в) про імовірність суми декількох попарно несумісних подій. Навести приклади
- •34. Вивести формули для обчислення параметрів вибіркового рівняння лінійної регресії. Пояснити зміст позначень. Навести приклади
- •35. Записати формули: а)повної імовірності; б) Байєса. Пояснити зміст позначень. Навести приклади.
- •37. Дати означення генеральної сукупності, вибіркової сукупності (вибірки), об’єму вибірки, повторної, безповторної та репрезентативної вибірок.
- •39. Дати визначення: а)полігону; б)гістограми; в)кумуляти частот та частостей. Назвати їх імовірнісний зміст. Навести приклади побудови.
- •40. Дати означення випадкової величини (в.В.), дискретної (д.В.В.) та неперервної (н.В.В.) випадкових величин.
- •41.Дати означення статистичної гіпотезти. Назвати основні види статистичних гіпотез. Дати означення нульової та альтернативної гіпотез. Дати означення помилки першого роду. Навести приклади.
- •44.Дати означення вибіркових: а)моди; б) медіани; в)початкового моменту; г)центрального моменту; д)асиметрії; е)ексцесу. Записати формули, для їх обчислення. Пояснити зміст позначень, навести
- •47. Вивести рівняння лінійної середньоквадратичної регресії y та X (y на X). Пояснити зміст позначень. Дати означення коефіцієнту регресії, залишкової дисперсії та пояснити, що вони характеризують.
- •48. Дати означення генеральної та вибіркової середніх. Довести незміщеність вибіркової середньої як оцінки генеральної середньої. Сформулювати властивість стійкості вибіркових середніх.
- •49. Записати випадкові величини, які мають розподіли: а) Пірсона; б)Стьюдента; в)Фішера. Записати функції щільності розподілу ймовірностей для цих розподілів. Пояснити зміст позначень.
- •51. Записати формули для обчислення математичного сподівання та дисперсії : а) функції д.В.В.; б) фцнкції н.В.В. Пояснити зміст позначень. Навести приклади.
- •52. Дати означення емпіричної та теоретичної частот, записати формулу для обчислення теоретичних частот для розподілу Пуассона.
1.Що в теорії ймовірностей розуміють під терміном «Закон великих чисел»? Записати нерівність а. Чебишова. Пояснити зміст букв.
Граничні теореми теорії ймовірностей встановлюють відповідність між теоретичними та дослідними характеристиками випадкових величин або випадкових подій при великій кількості випробувань. Граничні теореми описують також граничні закони розподілу.
Граничні теореми, які встановлюють відповідність між теоретичними та дослідними характеристиками випадкових подій, об’єднують загальною назвою – закона великих чисел.
Перша форма нерівності Чебишова.
Для довільної випадкової величини Х, яка приймає невід’ємні значення та має скінчене математичне сподівання Р(Х≥1)≤М(Х).
Якщо Х – дискретна випадкова величина,
то Р(Х≥1) =
Якщо Х – неперервна випадкова величина, f(x) – щільність її імовірностей, то
Р(Х≥1) =
.
Друга форма нерівності Чебишова.
Якщо випадкова величина Х має скінчені математичне сподівання та дисперсію, то для довільного ε>0 має місце нерівність
2. Дати означення системи випадкових величин.
Системою випадкових величин Х1, Х2,...,Хn називають сукупність цих ВВ, які вивчаються або розглядаються одночасно(СВВ).(Х;У), (Х;У;Z)...
Систему n ВВ (Х1, Х2,...,Хn) можна розглядати як випадкову точку в n-вимірному просторі з координатами (Х1, Х2,...,Хn) або як випадковий вектор, напрямлений з початку координат у точку М (Х1,Х2,...,Хn)
Законом розподілу ДВВ називається перелік можливих значень цієї величини (хі, уk) та їх імовірностей р(хі, уk), і=1,2,..., n; k=1,2,...,m
Найбільш часто закон розподілу двв задають у вигляді таблиці з двома входами. Закон розподілу двв дозволяє отримати закони розподілу кожної компоненти.
3.коефіцієнт кореляції –це кількісна характеристика залежності випадкових величин X та Y і часто використовується в статистиці
r XY=
Випадкові величини та звуть некорельованими якщо їх кореляційний момент або коефіцієнт кореляції дорівнює нулю.
Властивості:1. ! rXY !≤1
2.Якщо X та Y незалежні то r XY=0
3.якщо між X та Y є лінійна залежність Y=aX+b де а і b–постійні , то !rXY !=1
Вибірковий коефіцієнт кореляції
визначається
, де x,y –варіанти ознак X та Y, nxy –
частота пари варіант, n –обєм вибірки
, σx ,σy –вибіркові середні
квадратичні відхилення,
,
-
вибіркові середні. Відомо, що якщо
величини Y та X не залежать, то коефіцієнт
кореляції r=0, якщо r= -1, то Y та Х зв´язані
лінійною функцією начальною залежністю,
звідси слідує, що коефіцієнт кореляції
вимірює силу лінійного зв´язку між Y та
Х. Вибірковий коефіцієнт кореляції r –
являється оцінкою коефіцієнта кореляції
r генеральної сукупності і тому слугує
для виміру лінійного зв´язку між
величинами кількісними ознаками Х та
Y. Якщо вибірка має достатньо великий
об´єм та добре представляє генеральну
сукупність, то заключення про щільність
лінійної залежності між ознаками, яке
отримано за даними вибірки, в відомій
степені може бути розповсюджено і на
генеральну сукупність. Приклад – для
оцінки коефіцієнта кореляції ry
нормально розподіленої генеральної
сукупності (при np=50) можна скористатися
формулою: