
- •Учебное пособие
- •Часть I
- •Содержание
- •4.3 Потенциал геотермальной энергии в Украине………..59
- •4.11 Использование геотермальной энергии для
- •5.1 Потенциал ветровой энергии в Украине……………….97
- •Введение
- •1 Нетрадиционные источники энергии и их потенциал
- •Опыт возобновляемой энергетики ссср,
- •Нетрадиционная энергетика Украины
- •2 Нетрадиционные преобразователи энергии
- •Фотоэлектрические преобразователи
- •Термоэлектрические генераторы (тэг)
- •2.3 Радиоизотопные термоэлектрические генераторы
- •Термоэмиссионные преобразователи (тэп)
- •3 Солнечная энергетика
- •Гелиоэнергетический потенциал Украины
- •3.2 Солнечное теплоснабжение
- •Концентрирующие гелиоприемники
- •Солнечные электростанции
- •4 Геотермальная энергетика
- •4.1 Термальные воды
- •4.2 Запасы и распространение термальных вод
- •4.3 Потенциал геотермальной энергии в Украине
- •4.4 Использование геотермальной энергии для
- •Паужетская и Верхне-Мутновская ГеоТэс
- •Одноконтурные геотермальные энергоустановки
- •4.7 Двухконтурные геотермальные энергоустановки
- •Парогенераторы геотермальных установок
- •4.9 Турбокомпрессорные геотермальные энергоустановки
- •4.10 Гидропаротурбинные геотермальные энергоустановки
- •4.11 Использование геотермальной энергии для теплоснабжения
- •5 Энергия ветра и ее использование
- •Потенциал ветровой энергии в Украине
- •Классификация ветродвигателей
- •5.3 Работа поверхности при действии на нее силы ветра
- •Работа ветрового колеса крыльчатого
- •Большая и малая гидроэнергетика
- •Большая гидроэнергетика
- •Энергетический потенциал малых рек Украины
- •7 Тепловая энергия окружающей среды
- •7.1 Типы теплонасосных установок и область их
- •7.2 Эффективность систем теплоснабжения с
- •8 Энергия океана
- •8.1 Энергетические ресурсы океана
- •Основы преобразования энергии волн
- •Преобразователи энергии волн
- •Колеблющийся водяной столб
- •Подводные устройства
- •Энергии приливов и морских течений
- •Тепловая энергия океана
- •9 Биоэнергетика
- •9.1 Энергетический потенциал биомассы в Украине
- •Пиролиз (сухая перегонка)
- •Термохимические процессы
- •Спиртовая ферментация (брожение)
- •Использование этанола в качестве топлива
- •Твердые бытовые и сельскохозяйственные отходы
- •10 Экология нетрадиционной энергетики
- •10.1 Взаимодействие энергетики и экологии
- •Экологические последствия развития солнечной
- •Влияние ветроэнергетики на природную среду
- •Экология геотермальной энергетики
- •Экология энергии океана
- •Экология биоэнергетики
- •11 Мир ищет источник энергии (вместо заключения)
- •Рекомендуемая литература
- •Дополнительная литература
- •Справочная литература
- •Некоторые полезные ссылки
5.3 Работа поверхности при действии на нее силы ветра
Скорость ветра является важнейшей характеристикой технических свойств ветра. Поток ветра с поперечным сечением F обладает кинетической энергией, определяемой выражением:
|
(5.1) |
Масса воздуха, протекающая через поперечное сечение F со скоростью V, равна:
|
(5.2) |
Подставив (5.2) в выражение кинетической энергии (6.3.1), получим:
|
(5.3) |
откуда следует, что энергия ветра изменяется пропорционально кубу его скорости.
Мощность Т определяется произведением силы Р на скорость V:
|
(5.4) |
Одну и ту же работу можно получить либо за счёт большой силы, при малой скорости перемещения рабочей поверхности, либо, наоборот, за счёт малой силы, а, следовательно, и малой поверхности, но при соответственно увеличенной скорости её перемещения.
Допустим, мы имеем поверхность F, поставленную перпендикулярно к направлению ветра. Воздушный поток вследствие торможения его поверхностью получит подпор, и будет обтекать ее и производить давление силой Рх. Вследствие действия этой силы поверхность будет перемещаться в направлении потока с некоторой скоростью U (рис. 5.5); работа при этом будет равна произведению силы на скорость U, с которой перемещается поверхность F, т. е.:
|
(5.5) |
где Рх - сила сопротивления, которая равна :
|
(5.6) |
где Сх - аэродинамический коэффициент лобового сопротивления;
F - поверхность миделевого сечения теля, т.е. проекции площади тела на плоскость, перпендикулярную направлению воздушного потока.
В этом случае ветер набегает на поверхность с относительной скоростью, равной :
|
(5.7) |
Подставив значение Рх из уравнения (5.6) в уравнение (5.5), получим:
|
(5.8) |
|
|
Рисунок 5.5 – Действие силы ветра на поверхность
Определим отношение работы, развиваемой движущейся поверхностью и выраженной уравнением (5.8), к энергии ветрового потока, имеющего поперечное сечение, равное этой поверхности, а именно:
|
(5.9) |
После преобразований получим:
|
(5.10) |
Величину ξ называют коэффициентом использования энергии ветра.
Из уравнения (5.10) мы видим, что ξ зависит от скорости перемещения поверхности в направлении ветра. При некотором значении скорости U коэффициент £ получает максимальное значение. В самом деле, если скорость перемещения поверхности равна нулю U = 0, то работа ветра также равна нулю. Если U = V, т.е. поверхность перемещается со скоростью ветра, работа также будет равна нулю, так как нет силы сопротивления, за счёт которой совершается работа. Отсюда следует, что значение скорости U заключено в пределах между U = 0 и U = V.
Установлено, чтобы получить максимальное ξ, поверхность должна перемещаться со скоростью:
|
(5.11) |
Максимальный коэффициент использования энергии ветра при работе поверхности силой сопротивления не может быть больше ξ = 0,192.
Наибольший коэффициент использования энергии ветра у роторных ветродвигателей системы Савониуса - 18%.