Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
n1.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
6.81 Mб
Скачать

4.10 Гидропаротурбинные геотермальные энергоустановки

Полнота превращения теплоты геотермального теплоносителя в работу зависит в основном от двух факторов: параметров теплоносителя и характера процессов, которые образуют цикл геотермальной энергоустановки.

Максимальное превращение теплоты в работу может обеспечится «треугольным» циклом.

Рисунок 4.12 – Треугольный цикл гидропаротурбинной установки

Несовершенство циклов одно- и двухконтурных геотермальных энергоустановок паротурбин, проиллюстрировано на рис. 4.12, где принято, что рабочее тело цикла готовится в поверхностных аппаратах благодаря теплоте геотермального теплоносителя.

Контур f-k-d-e-f-цикл Ренкина, по которому работает одноконтурная энергоустановка. Его сопровождают значительные необратимые потери из-за несходимости линии охлаждения геотермального теплоносителя а-с с линией подвода теплоты к рабочему телу f-k-d.

Цикл двухконтурной энергоустановки с низкокипящим рабочим телом, описанной в этом разделе, изображено контуром n-g-1-m-n. Термодинамическое несовершенство этого цикла иллюстрируется несовпадением линии отведения теплоты от геотермального теплоносителя а-с с линией ее подведения к рабочему телу n-g-1 и объясняется, как отмечалось выше, характером изменения теплоемкости низкокипящего вещества.

Оптимальный цикл геотермальной энергоустановку теплоноситель которой представляет собой перегретую воду, должен совпадать с обратимым „треугольным" циклом.

Термический КПД последнего, как и любого цикла, можно записать в виде:

, (4.7)

где q1, q2- подведенная и отведенная теплота, которая выражается через средние теплоемкости процесса с-а.

В этом случае выражение (4.2) приобретает вид

где С с-а, С с-а"- средние теплоемкости процесса с-а, причем

С с-а = ; С с-а = ln (4.8)

Если принять, что С с-а = С с-а", то

. (4.9)

При небольшой разнице температур Т1 и Тн приближенное выражение термического КПД „треугольного " цикла имеет очень простой вид

,

или через КПД цикла Карно

. (4.10)

Термический КПД обратимого «треугольного» цикла в (1+Тн1) раз меньше термического КПД обратимого условного цикла Карно у которого температура холодного источника одинаковая с температурой такого же источника «треугольного» цикла, а температура горячего источника равняется температуре геотермального теплоносителя.

При осваиваемых в наше время температурах геотермального теплоносителя t1 = 180÷200 0С достигается существенное значение КПД (около 20%). Однако осуществление «треугольного» цикла обусловлено рядом трудностей, главная из которых связанная с эффективной реализацией процесса a-b. Для реализации „треугольного" цикла, нужно иметь тепловой двигатель, способный работать на капельной жидкости, закипающей в процессе расширения. К таким двигателям принадлежит гидропаровая турбина, рабочий процесс которой в идеальном случае должен совпадать с изоэнтропой a-b.

Разработка гидропаровой турбины идет двумя направлениями. В первом делается попытка использовать для этой цели обычную осевую лопастную машину (турбину). Однако характер движения двухфазного парокапельного потока в криволинейных каналах проточной части таких машин вызывает большие необратимые потери, порождает коррозию и приводит к сильному износу обтекаемых профильных поверхностей.

Второе направление основывается на использовании реакции двухфазной струи истекающей из сопла.

а - схема канала ротора; б - идеальный процесс в канале

Рисунок 4.13 - Гидропаровая турбина

Схему канала ротора гидропаровой турбины, работающей на этом принципе, показано на рис. 4.13. Вода поступает в ротор турбины через полый вал и двигается сначала вдоль его оси, а дальше - к периферии. Здесь проточная часть турбины ничем не отличается от проточной части центробежного насоса; отсутствие кавитации может обеспечиваться аналогично тому, как это делается в насосах, которые работают на горячей жидкости. Дальше канал поворачивает на 90°, а его проточная часть выполняется в виде сопла Лаваля. Работоспособную гидропаровую турбину по описанному принципу можно создать при выполнении двух основных условий :

1) в сопле должен быть предельный режим течения;

2) за пределами сопла двухфазный сверхзвуковой поток не должен встречать подвижных частей, которые испытывают эрозийный снос.

Предельный режим течения в сопле характеризуется тем, что закипание жидкости возникает только в критическом сечении сопла Лаваля. Он достигается, если давление перед соплом р1 превышает давление насыщения Рs, то есть

P1- Рs > w2кр / (2g).

Прохождение процесса в канале ротора идеальной гидропаровой турбины в координатах р-v изображено на рис. 4.13б. Вода, поступающая к соплу по каналу ротора, разгоняется в его сужающейся части (процесс 1-1') и приобретает в критическом перерезе скорость wкр, имея при этом угловую скорость u1, которая определяется радиусом r1 (см. рис. 4.13а). Вследствие этого давление торможения (без учета потерь) растет на u2 р'/2, где р' - плотность жидкости в докритичной зоне. Это давление в основном и определяет скорость жидкости в критическом сечении 1-1, после чего наступает процесс ее закипания. За критическим сечением парожидкостный поток расширяется (процесс 1-2) до конечного давления р2, приобретая относительную скорость w2.

Без учета потерь энергии в парожидкостном потоке относительный внутренний КПД гидропаровой турбины определяется выражением:

где х=u2/w2 - (u2- угловая скорость на радиусе r2);

а= 2cos ( - коэффициент скорости; - угол между векторами скоростей w2 и u2 ).

Теоретическая относительная скорость потока w2 вычисляется по формуле

где р0 - начальное давление жидкости;

іо - удельная энтальпия жидкости на входе в сопло;

іх' - удельная энтальпия пара на срезе сопла;

і'- удельная энтальпия жидкости на этом самом срезе.

При других одинаковых условиях именно от зависит значение относительного внутреннего КПД гидропаровой турбины, который, в свою очередь, доминирующее влияет на эффективный КПД. Преимущества «треугольного» цикла могут быть сведены к нулю, если гидропаровая турбина будет иметь низкий относительный внутренний КПД. Значения последнего зависит от эффективности преобразования потенциальной механической и тепловой энергии горячей воды в кинетическую энергию потока, а определяется оно геометрией сопла и характером организованного течения потока в его проточной части, правильный выбор которых может быть сделан только тогда, когда хорошо известно физические процессы, что проходят в сопле.

Возможность осуществления «треугольного» цикла в энергоустановках на геотермальной воде, зависит от организации процесса истечения перегретой воды. Истечение геотермального теплоносителя в каналах гидропаровой турбины происходит с снижением давления. Это вызывает десорбцию углекислого газа и приводит к нарушению углекислотного равновесия. Хотя геотермальный теплоноситель предварительно пропускается через дегазатор, однако в нем неминуемо остается взвесь, которая интенсифицирует процесс образования шлама и накипи в каналах турбины.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]