Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Экзамен физиология.doc
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
1.92 Mб
Скачать

Движение крови по сосудам

Кровь движется по сосудам благодаря сокращениям сердца, создающим разницу давлений крови в разных частях сосудистой системы. Кровь течет от места, где ее давление выше (артерии), туда, где ее давление ниже (капилляры, вены). Скорость кровотока в аорте составляет 0,5 м/с, в капиллярах - 0,0005 м/с, в венах - 0,25 м/с.

Сердце сокращается ритмично, поэтому в сосуды кровь поступает порциями. Однако течет кровь в сосудах непрерывно. Причины этого - в эластичности стенок сосудов.

Для движения крови по венам недостаточно одного давления, создаваемого сердцем. Этому способствуют клапаны вен, обеспечивающие ток крови в одном направлении; сокращение близлежащих скелетных мышц, которые сжимают стенки вен, проталкивая кровь к сердцу; присасывающее действие крупных вен при увеличении объема грудной полости и отрицательное давление в ней.

Кровяное давление и пульс

Кровяное давление - давление, при котором кровь находится в кровеносном сосуде. Наиболее высокое давление в аорте, меньше в крупных артериях, еще меньше в капиллярах и самое низкое в венах.

Кровяное давление у человека измеряют с помощью ртутного или пружинного тонометра в плечевой артерии (артериальное давление). Максимальное (систолическое) давление - давление во время систолы желудочков (110-120 мм рт. ст.). Минимальное (диастолическое) давление - давление во время диастолы желудочков (60-80 мм рт. ст.). Пульсовое давление - разность между систолическим и диастолическим давлением. Повышение кровяного давления называется гипертонией, понижение - гипотонией. С возрастом эластичность стенок артерий уменьшается, поэтому давление в них становится выше.

Движение крови по сосудам возможно благодаря разности давлений в начале и в конце круга кровообращения. Кровяное давление в аорте и крупных артериях составляет 110-120 мм рт. ст. (то есть на 110-120 мм рт. ст. выше атмосферного), в артериях - 60-70, в артериальном и венозном концах капилляра - 30 и 15 соответственно, в венах конечностей 5-8, в крупных венах грудной полости и при впадении их в правое предсердие почти равно атмосферному (при вдохе несколько ниже атмосферного, при выдохе - несколько выше).

Артериальный пульс - ритмичные колебания стенок артерий в результате поступления крови в аорту при систоле левого желудочка. Пульс можно обнаружить на ощупь там, где артерии лежат ближе к поверхности тела: в области лучевой артерии нижней трети предплечья, в поверхностной височной артерии и тыльной артерии стопы.

Лимфатическая система

Лимфа - бесцветная жидкость; образуется из тканевой жидкости, просочившейся в лимфатические капилляры и сосуды; содержит в 3-4 раза меньше белков, чем плазма крови; реакция лимфы щелочная. В лимфе нет эритроцитов, в небольших количествах содержатся лейкоциты, проникающие из кровеносных капилляров в тканевую жидкость.

Лимфатическая система включает лимфатические сосуды (лимфатические капилляры, крупные лимфатические сосуды, лимфатические протоки - наиболее крупные сосуды) и лимфатические узлы.

Функции лимфатической системы: дополнительный отток жидкости от органов; кроветворная и защитная функции (в лимфатических узлах происходит размножение лимфоцитов и фагоцитирование болезнетворных микроорганизмов, а также выработка иммунных тел); участие в обмене веществ (всасывание продуктов распада жиров).

(2) Регуляция системы крови Регуляция системы крови включает в себя поддержание постоянства объема циркулирующей крови, ее морфологиче-ского состава и физико-химических свойств плазмы. В организме существует два основных механизма регуляции сис-темы крови—нервный и гуморальный. Высшим подкорковым центром, осуще-ствляющим нервную регуляцию системы крови, является гипоталамус. Кора го-ловного мозга оказывает влияние на сис-тему крови также через гипоталамус. Эфферентные влияния гипоталамуса включают механизмы кроветворения, кровообращения и перераспределения крови, ее депонирования и разрушения. Рецепторы костного мозга, печени, селе-зенки, лимфатических узлов и кровенос-ных сосудов воспринимают происходя-щие здесь изменения, афферентные им-пульсы от этих рецепторов служат сиг-налом соответствующих изменений в подкорковых центрах регуляции. Гипо-таламус через симпатический отдел ве¬етативной нервной системы стимулирует кроветворение, усиливая эритропоэз. Парасимпатические нервные влияния тормозят эритропоэз и осуществляют перераспределение лейкоцитов: умень-шение их количества в периферических сосудах и увеличение в сосудах внутрен-них органов. Гипоталамус принимает также участие в регуляции осмотическо-го давления, поддержании необходимого уровня сахара в крови и других физико-химических констант плазмы крови. Нервная система оказывает как прямое, так и косвенное регулирующее влияние на систему крови. Прямой путь регуля-ции заключается в двусторонних связях нервной системы с органами кроветво-рения, кровераспределения и кровераз-рушения. Афферентные и эфферентные импульсы идут в обоих направлениях, регулируя все процессы системы крови. Косвенная связь между нервной систе-мой и системой крови осуществляется с помощью гуморальных посредников, которые, влияя на рецепторы кроветвор-ных органов, стимулируют или ослабля-ют гемопоэз. Среди механизмов гуморальной регуля-ции крови особая роль принадлежит биологически активным гликопротеидам — гемопоэтинам, синтезируемым глав-ным образом в почках, а также в печени и селезенке. Продукция эритроцитов регулируется эритропоэтинами, лейко-цитов—лейкопоэтинами и тромбоци-тов—тромбопоэтинами. Эти вещества усиливают кроветворение в костном мозге, селезенке, печени, ретикулоэндо-телиальной системе. Концентрация ге-мопоэтинов увеличивается при сниже-нии в крови форменных элементов, но в малых количествах они постоянно со-держатся в плазме крови здоровых лю-дей, являясь физиологическими стимуля-торами кроветворения. Стимулирующее влияние на гемопоэз оказывают гормоны гипофиза (сомато-тропный и адренокортикотропный гор-моны), коркового слоя надпочечников (глюкокортикоиды), мужские половые гормоны (андрогены). Женские половые гормоны (эстрогены) снижают гемо¬поэз, поэтому содержание эритроцитов, гемо-глобина и тромбоцитов в крови женщин меньше, чем у мужчин. У мальчиков и девочек (до полового созревания) разли-чий в картине крови нет, отсутствуют они и у людей старческого возраста.

Физико-химические свойства плазмы.

Плотность плазмы крови равна 1025-1034 кг/м3. Плотность цельной крови больше и составляет 1050-1060 кг/м3.

Вязкость плазмы в 1,7-2,2 а цельной крови в 5,0 раз больше вязкости воды. Плотность крови и вязкость ее определяется количеством эритроцитов и белковым составом плазмы.

Осмотическое давление плазмы.

Если отделить полупроницаемой перегородкой два сосуда, содержащие растворы разной концентрации, то молекулы растворителя проходят через эту перегородку в обоих направлениях. Однако в сторону раствора с более высокой концентрацией растворенного вещества переходит большее число молекул растворителя, чем в обратном направлении. Диффузию растворителя через перегородку, разделяющую растворы разной концентрации, называют осмосом. Давление, которое нужно приложить к раствору большей концентрации, чтобы процесс осмоса прекратился, называют осмотическим давлением. Оно зависит от концентрации растворенного вещества. Чем она выше, тем большую силу надо приложить к раствору для прекращения диффузии молекул растворителя и тем, следовательно, больше осмотическое давление данного раствора.

В организме стенка кровеносного сосуда представляет собой полупроницаемую оболочку, по одну сторону которой находится кровь, по другую — тканевая жидкость. Осмотическое давление плазмы крови зависит от количества находящихся в ней ионов электролитов, молекул белка и других органических веществ. Оно соответствует приблизительно 7,6 атм.

Растворы, имеющие одинаковое осмотическое давление, называют изотоническими. Нормальная жизнедеятельность клеток может осуществляться только в изотонической среде. 0,9-процентный раствор хлористого натрия изотоничен крови, поэтому его называют физиологическим. Растворы с большей концентрацией ионов и большим осмотическим давлением называют гипертоническими, а с меньшей концентрацией и меньшим давлением — гипотоническими.

Глюкоза, мочевина и другие органические соединения играют незначительную роль в создании осмотического давления крови, так как находятся в плазме в меньшем количестве, чем соли, и имеют по сравнению с ними очень большую молекулярную массу. Исключение составляют белки плазмы, хотя они обусловливают менее 1% общей величины осмотического давления крови. Стенки сосудов легко проницаемы для электролитов, поэтому они находятся в крови и тканевой лимфе в одинаковой концентрации и не могут быть причиной осмотических явлений. Для белков стенки непроницаемы, и от соотношения их концентрации по обе стороны стенки сосуда зависит движение воды из крови в ткань или в обратном направлении. Если содержание белка в крови понижается, как это бывает, например, при голодании, жидкость направляется преимущественно из сосудов в тканевую лимфу, и возникают отеки. Осмотическое давление, создаваемое белками крови, получило название онкотического. При одном и том же общем количестве белков оно оказывается более высоким, если преобладают относительно низкомолекулярные альбумины, и менее высоким, если преобладают глобулины, молекулярная масса которых значительно больше.

Активная реакция крови определяется соотношением гидроксильных и водородных ионов. В практике количество последних или водородное число, принято выражать логарифмом их концентрации с обратным знаком. Это число называют водородным показателем (pH). В среднем pH крови равен 7,36. Сдвиги pH ниже 7 и выше 8 опасны для жизни.

Смеси веществ (например, слабая кислота и ее соль), предохраняющие реакцию среды от изменений, т.е. поддерживающие постоянство pH, получили название буферных систем. Важнейшая из них в крови - карбонатная система - состоит из угольной кислоты и ее двууглекислой соли.

В организме постоянно образуются молочная кислота и другие кислые продукты. Поступая из клеток в кровь, они вытесняют ионы натрия и калия из бикарбонатов; в результате образуются соли молочной и других кислот и свободная угольная кислота, избыток которой выводится из организма. Таким образом, происходит компенсация кислотного сдвига. Существенное значение в поддержании pH крови имеет фосфатная буферная система, представленная одно- и двузамещенным фосфорнокислым натрием, образуют соответствующие соли и однозамещенный фосфорнокислый натрий, который удаляется с мочой.

Na2HPO4 + H2CO3 ↔ NaHCO3 + NaH2PO4

Буферными свойствами обладают и белки крови, дающие амфотерные реакции вследствие наличия в их составе кислотных и щелочных групп. В кислой среде белки связывают водородные ионы, диссоциируя как основания, а в щелочной связывают гидроксильные ионы, диссоциируя как кислоты. Из белков крови наибольшими буферными свойствами обладает гемоглобин. Все буферные системы крови создают ее щелочной резерв.

(3)