Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Экзамен физиология.doc
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
1.92 Mб
Скачать

6.5. Роль Хлора в организме

Хлор. Главным анионом внеклеточной жидкости является хлор, 65% которого находится в ее мобильной части. Концентрация хлора в плазме крови в норме колеблется от 90 до 105 ммоль/л. Специаль­ной физиологической роли этот анион не выполняет, хотя участвует в   формировании   потенциала   покоя   возбудимых   клеток.   Избыток хлора ведет к ацидозу. Анион необходим для  образования соляной кислоты в желудке.

6.6. Роль Фосфатов в организме

Фосфаты являются основными внутриклеточными анионами, где концентрация фосфата выше, чем во внеклеточной среде в 40 раз. Содержание неорганического фосфата в крови составляет 0,94-1,44 ммолль/л, но 50% неорганического фосфата находится в костях, где он вместе с кальцием образуют основное минеральное вещество костной ткани. Фосфаты — необходимый компонент клеточных мем­бран, играют ключевую роль в метаболических процессах, входя в состав многих коферментов, нуклеиновых кислот и фосфопротеинов, вторичных посредников и макроэргических соединений.

6.7. Роль Сульфатов в организме

Сульфаты в большем количестве содержатся во внутриклеточном пространстве, входят в состав многих биологически активных ве­ществ. В плазме крови неорганических сульфатов содержится 0,3-1,5 ммоль/л. Они необходимы для обезвреживания токсических со­единений в печени.

Для гомеостаза электролитов необходимо взаимодействие несколь­ких процессов: поступление в организм, перераспределение и депо­нирование в клетках и их микроокружении, выделение из организ­ма.

Поступление в организм зависит от состава и свойств пищевых продуктов и воды, особенностей их всасывания в желудочно-ки­шечном тракте и состояния энтерального барьера. Однако, несмотря на широкие колебания количества и состава пищевых веществ и воды, водно-солевой баланс в здоровом организме неуклонно под­держивается за счет изменений экскреции с помощью органов вы­деления. Основную роль в этом гомеостатическом регулировании выполняют почки.

7. Регуляция водно-солевого обмена

Регуляция водно-солевого обмена, как и большинство физиологичес­ких регуляций, включает афферентное, центральное и эфферентное звенья. Афферентное звено представлено массой рецепторных аппара­тов сосудистого русла, тканей и органов, воспринимающих сдвиги осмотического давления, объема жидкостей и их ионного состава. В результате, в центральной нервной системе создается интегрированная картина состояния водно-солевого баланса в организме. Следствием центрального анализа является изменение питьевого и пищевого по­ведения, перестройка работы желудочно-кишечного тракта и системы выделения (прежде всего функции почек), реализуемая через эффе­рентные звенья регуляции. Последние представлены нервными и, в большей мере,  гормональными влияниями.

(28)

Эндокринные функции поджелудочной железы

Функции эндокринных тканей в органах, обладающих неэдокрикными функциями

Содержание:

1. Островки Лангергаса 2. Регулятор секре­ции инсулина 3. Физиологические эффекты инсулина 4. Физиологические эффекты глюкагона

1. Островки Лангергаса

Эндокринную функцию   в   поджелудочной   железе   выполняют   скопления   клеток эпителиального   происхождения,    получившие   название    островков Лангерганса   и   составляющие   всего   1-2   %   массы   поджелудочной железы.

Основная масса железы — это экзокринный орган, обра­зующий панкреатический пищеварительный сок. Количество остров­ков в железе взрослого человека очень велико и составляет от 200 тысяч до полутора миллионов.

В  островках лангергаса различают три типа клеток, продуцирующих гормоны:

а) альфа-клетки  образуют  глюкагон, б) бета-клетки — инсулин,   в) дельта-клетки — соматостатин.

Крово­снабжение  островков более выражено, чем основной паренхимы железы.

Иннервация осуществляется постганлионарными симпати­ческими и парасимпатическими нервами, причем среди клеток островков расположены нервные клетки, образующие нейроинсулярные комплексы.

Вверх

2. Регулятор секре­ции инсулина

Регуляция секреции гормонов клеток островков, как и их эффекты, взаимосвязана, что позволяет рассматривать островковый аппарат как своеобразный «мини-орган» (рис. 5.2.)

Рис.5.2. Функциональная организация островков Лангерганса как «мини-органа». Сплошные линии — стимуляция, штриховые линии — ингибированиe.

Основным регулятором секре­ции инсулина является д-глюкоза притекающей крови, активирующая в бета-клетках специфическую аденилатциклазу и пул (фонд) цАМФ. Через этот посредник глюкоза стимулирует выброс инсулина в кровь из специфических секреторных гранул. Усиливает ответ бета-клеток на действие глюкозы гормон 12-перстной кишки — желудочный ингибиторный пептид (ЖИП). Через неспецифический независимый от глюкозы пул цАМФ, стимулируют секрецию инсулина ионы Са++. В регуляции секреции инсулина определенную роль играет и вегетатив­ная  нервная  система.   Блуждающий нерв и ацетилхолин  стимулируют секрецию   инсулина,   а   симпатические   нервы   и   норадреналин   через альфа-адренорецепторы подавляют секрецию инсулина и  стимулируют выброс  глюкагона. Специфическим  ингибитором продукции инсулина является гормон дельта-клеток островков — соматостатин.    Этот гор­мон образуется и в кишечнике,  где тормозит всасывание  глюкозы и тем самым уменьшает ответную реакцию  бета-клеток на  глюкозный стимул.  Образование в поджелудочной железе и кишечнике пептидов, аналогичных   мозговым,   например,   соматостатина,   является   веским аргументом   в   пользу   взгляда   о   существовании   в   организме   единой APUD-системы. Секреция  глюкагона  стимулируется  снижением  уровня  глюкозы  в  крови,  гормонами желудочно-кишечного  тракта  (ЖИП. гастрин, секретин, холецистокинин-панкреозимин) и при уменьшении в крови ионов Са++.  Подавляют секрецию глюкагона инсулин,  сома­тостатин, глюкоза крови и Са++. Клетки желудочно-кишечного тракта, продуцирующие гормоны, являются своеобразными «приборами ранне­го   оповещения»   клеток   панкреатических   островков   о   поступлении пищевых веществ в организм, требующих для утилизации и распред­еления участия панкреатических гормонов   Эта функциональная вза­имосвязь нашла отражение в термине «гастро-энтеро-панкреатическая система».

Вверх

3. Физиологические эффекты инсулина

Инсулин оказывает влияние на все виды обмена вешеств, он способствует анаболическим процессам, увеличивая синтез гликогена, жиров и белков,  тормозя эффекты  многочисленных контринсулярных гормонов (глюкагона, катехоламинов, глюкокортикоидов и соматотропина). Все эффекты инсулина по скорости их реализации подразделяются на четыре группы: очень быстрые (через несколько секунд) — ги­перполяризация мембран клеток за исключением гепатоцитов, по­вышение проницаемости для глюкозы, активация Na-K-АТФазы, входа К и откачивания Na, подавления Са-насоса и задержка Са++; быстрые эффекты (в течение нескольких минут) — активация и торможение различных ферментов, подавляющих катаболизм и уси­ливающих анаболические процессы; медленные процессы (в течение нескольких часов) — повышенное поглощение аминокислот, изме­нение синтеза РНК и белков-ферментов; очень медленные эффекты (от часов до суток) — активация митогенеза и размножения клеток.

Действие инсулина на углеводный обмен проявляется:

1) повыше­нием проницаемости мембран в мышцах и жировой ткани для глю­козы, 2) активацией утилизации глюкозы клетками, 3) усилением процессов фосфорилирования; 4) подавлением распада и стимуля­цией синтеза гликогена; 5) угнетением глюконеогенеза; 6) актива­цией  процессов   гликолиза; 7) гипогликемией.

Действие инсулина на белковый обмен состоит в:

1) повышении проницаемости мембран для аминокислот; 2) усилении синтеза иРНК; 3) активации в печени синтеза аминокислот; 4) повышении синтеза и подавлении распада белков.

Основные эффекты инсулина на липидный обмен:

1) стимуляция синтеза свободных жирных кислот из глюкозы; 2) стимуляция син­теза триглицеридов; 3) подавление распада жира; 4) активация окис­ления кетоновых тел в печени.

Столь широкий спектр метаболических эффектов свидетельствует о том, что инсулин необходим для осуществления функционирова­ния всех тканей, органов и физиологических систем, реализации эмоциональных и поведенческих актов, поддержания гомеостазиса, осуществления механизмов приспособления и зашиты от неблаго­приятных  факторов  среды.

Недостаток инсулина (относительный дефицит по сравнению с уровнем контринсулярных гормонов, прежде всего, глюкагона) ведет к сахарному диабету. Избыток инсулина вызывает гипогликемию с резкими нарушениями функций центральной нервной системы, ис­пользующей глюкозу как основной источник энергии независимо от инсулина.

4. Физиологические эффекты глюкагона

Глюкагон яв­ляется мощным контринсулярным гормоном и его эффекты реализу­ются в тканях через систему вторичного посредника аденилатциклаза-цАМФ. В отличие от инсулина, глюкагон повышает уровень сахара в крови, в связи с чем его называют гипергликемическим гормоном.

Основные эффекты глюкагона проявляются в следующих сдвигах ме­таболизма:

1) активация гликогенолиза в печени и мышцах; 2) акти­вация глюконеогенеза; 3) активация липолиза и подавление синтеза жира; 4) повышение синтеза кетоновых тел в печени и угнетение их окисления; 5) стимуляция  катаболизма  белков в  тканях,  прежде  всего  в  печени,  и  увеличение  синтеза  мочевины.

Эндокринная функция поджелудочной железы. Инсулин и его роль в обмене углеводов, белков и жиров. Сахарный диабет

Эндокринная функция поджелудочной железы

Поджелудочная железа человека (лат. pancreas) - орган пищеварительной системы; крупная железа, обладающая внешнесекреторной и внутреннесекреторной функциями.

Внешнесекреторная функция органа реализуется выделением панкреатического сока, содержащего пищеварительные ферменты. Производя гормоны, поджелудочная железа принимает важное участие в регуляции углеводного, жирового и белкового обмена.

Поджелудочная железа является главным источником ферментов для ᴨȇреваривания жиров, белков и углеводов - главным образом, трипсина и химотрипсина, панкреатической липазы и амилазы. Основной панкреатический секрет протоковых клеток содержит и ионы бикарбоната, участвующие в нейтрализации кислого желудочного химуса. Секрет поджелудочной железы накапливается в междольковых протоках, которые сливаются с главным выводным протоком, открывающимся в двенадцатиᴨȇрстную кишку.

Между дольками вкраплены многочисленные группы клеток, не имеющие выводных протоков, - т. н. островки Лангерганса. Островковые клетки функционируют как железы внутренней секреции (эндокринные железы), выделяя непосредственно в кровоток глюкагон и инсулин - гормоны, регулирующие метаболизм углеводов. Эти гормоны обладают противоположным действием: глюкагон повышает, а инсулин понижает уровень глюкозы в крови.

Протеолитические ферменты секретируются в просвет ацинуса в виде зимогенов (проферментов, неактивных форм ферментов) -- трипсиногена и химотрипсиногена. При высвобождении в кишку они подвергаются действию энтерокиназы, присутствующей в пристеночной слизи, которая активирует трипсиноген, превращая его в трипсин. Свободный трипсин далее расщепляет остальной трипсиноген и химотрипсиноген до их активных форм. Образование ферментов в неактивной форме является важным фактором, препятствующим энзимному повреждению поджелудочной железы, часто наблюдаемому при панкреатитах.

Гормональная регуляция экзокринной функции поджелудочной железы обесᴨȇчивается гастрином, холецистокинином и секретином - гормонами, продуцируемыми клетками желудка и двенадцатиᴨȇрстной кишки в ответ на растяжение а также секрецию панкреатического сока.

Повреждение поджелудочной железы представляет серьёзную опасность. Пункция поджелудочной железы требует особой осторожности при выполнении.

Поджелудочная железа человека представляет собой удлинённое дольчатое образование серовато-розоватого оттенка и расположена в брюшной полости позади желудка, тесно примыкая к двенадцатиᴨȇрстной кишке. Орган залегает в верхнем отделе на задней стенке полости живота в забрюшинном пространстве, располагаясь поᴨȇречно на уровне тел I-II поясничных позвонков.

Поджелудочная железа включает экзокринную и эндокринную части.

Эндокринная часть поджелудочной железы образована лежащими между ацинусов панкреатическими островками, или островками Лангерганса.

Островки состоят из клеток - инсулоцитов, среди котоҏыҳ на основании наличия в них различных по физико-химическим и морфологическим свойствам гранул выделяют 5 основных видов:

- бета-клетки, синтезирующие инсулин;

- альфа-клетки, продуцирующие глюкагон;

- дельта-клетки, образующие соматостатин;

- D1-клетки, выделяющие ВИП;

- PP-клетки, вырабатывающие панкреатический полиᴨȇптид.

Кроме того, методами иммуноцитохимии и электронной микроскопии было показано наличие в островках незначительного количества клеток, содержащих гастрин, тиролиберин и соматолиберин.

Островки представляют собой компактные пронизанные густой сетью фенестрированных капилляров скопления упорядоченных в гроздья или тяжи внутрисекреторных клеток. Клетки слоями окружают капилляры островков, находясь в тесном контакте с сосудами; большинство эндокриноцитов контактируют с сосудами либо посредством цитплазматических отростков, либо примыкая к ним непосредственно.

Инсулин и его роль в обмене углеводов, белков и жиров

Инсулин (от лат. insula - остров) - гормон ᴨȇптидной природы, образуется в бета-клетках островков Лангерганса поджелудочной железы.

Инсулин оказывает многогранное влияние на обмен практически во всех тканях. Основное действие инсулина заключается в снижении концентрации глюкозы в крови.

Инсулин увеличивает проницаемость плазматических мембран для глюкозы, активирует ключевые ферменты гликолиза, стимулирует образование в ᴨȇчени и мышцах из глюкозы гликогена, усиливает синтез жиров и белков. Кроме того, инсулин подавляет активность ферментов, расщепляющих гликоген и жиры. То есть, помимо анаболического действия, инсулин обладает также и антикатаболическим эффектом.

Нарушение секреции инсулина вследствие деструкции бета-клеток - абсолютная недостаточность инсулина - является ключевым звеном патогенеза сахарного диабета 1-го типа. Нарушение действия инсулина на ткани - относительная инсулиновая недостаточность - имеет важное место в развитии сахарного диабета 2-го типа.

Главным стимулом к синтезу и выделению инсулина служит повышение концентрации глюкозы в крови.

Синтез и выделение инсулина представляют собой сложный процесс, включающий несколько этапов. Первоначально образуется неактивный предшественник гормона, который после ряда химических превращений в процессе созревания превращается в активную форму.

Так или иначе, инсулин затрагивает все виды обмена веществ во всём организме. Однако в ᴨȇрвую очередь действие инсулина касается именно обмена углеводов. Основное влияние инсулина на углеводный обмен связано с усилением транспорта глюкозы через клеточные мембраны. Активация инсулинового рецептора запускает внутриклеточный механизм, который напрямую влияет на поступление глюкозы в клетку путём регуляции количества и работы мембранных белков, ᴨȇреносящих глюкозу в клетку.

В наибольшей стеᴨȇни от инсулина зависит транспорт глюкозы в двух типах тканей: мышечная ткань (миоциты) и жировая ткань (адипоциты) - это т. н. инсулинозависимые ткани. Составляя вместе почти 2/3 всей клеточной массы человеческого тела, они выполняют в организме такие важные функции как движение, дыхание, кровообращение и т. п., осуществляют запасание выделенной из пищи энергии.

Сахарный диабет

С медицинской точки зрения сахарный диабет характеризуется гиᴨȇргликемической глюкозурией, т. е. присутствием глюкозы в моче на фоне повышенного ее уровня в крови. Болезнь получила свое название от греческого diabetes, что означает «сифон» (имеется в виду чрезмерное мочеотделение); определение «сахарный» подчеркивает отличие этой болезни от несахарного диабета - редкого заболевания, не связанного с нарушением метаболизма глюкозы.

Несахарный диабет является следствием частичной или полной неспособности гипофиза секретировать антидиуретический (снижающий мочеотделение) гормон, что приводит к выделению большого количества сильно разведенной мочи.

(26)

Вегетати́вная не́рвная систе́ма (от лат. vegetatio — возбуждение, от лат. vegetativus — растительный), ВНС, автономная нервная система, ганглионарная нервная система (от лат. ganglion — нервный узел), висцеральная нервная система (от лат. viscera — внутренности), органная нервная система, чревная нервная система, systema nervosum autonomicum (PNA) — часть нервной системы организма, комплекс центральных и периферических клеточных структур, регулирующих функциональный уровень внутренней жизни организма, необходимый для адекватной реакции всех его систем.

Вегетативная нервная система — отдел нервной системы, регулирующий деятельность внутренних органов, желёз внутренней и внешней секреции, кровеносных и лимфатических сосудов[1]. Играет ведущую роль в поддержании постоянства внутренней среды организма и в приспособительных реакциях всех позвоночных.

Анатомически и функционально вегетативная нервная система подразделяется на симпатическую, парасимпатическую и метасимпатическую. Симпатические и парасимпатические центры находятся под контролем коры больших полушарий и гипоталамических центров[2].

В симпатическом и парасимпатическом отделах имеются центральная и периферическая части. Центральную часть образуют тела нейронов, лежащих в спинном и головном мозге. Эти скопления нервных клеток получили название вегетативных ядер. Отходящие от ядер волокна, вегетативные ганглии, лежащие за пределами центральной нервной системы, и нервные сплетения в стенках внутренних органов образуют периферическую часть вегетативной нервной системы.

Симпатические ядра расположены в спинном мозге. Отходящие от него нервные волокна заканчиваются за пределами спинного мозга в симпатических узлах, от которых берут начало нервные волокна. Эти волокна подходят ко всем органам.

Парасимпатические ядра лежат в среднем и продолговатом мозге и в крестцовой части спинного мозга. Нервные волокна от ядер продолговатого мозга входят в состав блуждающих нервов. От ядер крестцовой части нервные волокна идут к кишечнику, органам выделения.

Метасимпатическая нервная система представлена нервными сплетениями и мелкими ганглиями в стенках пищеварительного тракта, мочевого пузыря, сердца и некоторых других органов.

Деятельность вегетативной нервной системы не зависит от воли человека.

Симпатическая нервная система усиливает обмен веществ, повышает возбуждаемость большинства тканей, мобилизует силы организма на активную деятельность. Парасимпатическая система способствует восстановлению израсходованных запасов энергии, регулирует работу организма во время сна.

Под контролем автономной системы находятся органы кровообращения, дыхания, пищеварения, выделения, размножения, а также обмен веществ и рост. Фактически эфферентный отдел ВНС осуществляет нервную регуляцию функций всех органов и тканей, кроме скелетных мышц, которыми управляет соматическая нервная система.

В отличие от соматической нервной системы, двигательный эффекторный нейрон в автономной нервной системе находится на периферии, и спинной мозг лишь косвенно управляет его импульсами.

Термины автомномная система, висцеральная система, симпатический отдел нервной системы неоднозначны. В настоящее время симпатическими называют только часть висцеральных эфферентных волокон. Однако различные авторы используют термин «симпатический» по-разному:

  • в узком понимании, как описано в предложении выше;

  • в качестве синонима термина «автономный»;

  • как название всей висцеральной («вегетативной»)[3] нервной системы — как афферентной, так и эфферентной.

Терминологическая путаница возникает также, когда автономной называют всю висцеральную систему (и афферентную, и эфферентную).

Классификация отделов висцеральной нервной системы позвоночных, приведённая в руководстве[4] А. Ромера и Т. Парсонса, выглядит следующим образом:

Висцеральная нервная система:

  • афферентная;

  • эфферентная:

    • особая жаберная;

    • автономная:

      • симпатическая;

      • парасимпатическая.