
- •Вольтамперная характеристика газоразрядного счетчика
- •Возможности хозяйственного использования животных и продуктов их убоя при внешнем и внутреннем облучении.
- •Задача радиационного контроля, его виды и способы осуществления.
- •Влияние ии на естественный и искусственный иммунитет
- •Радиоактивные отходы. Их виды, сбор, удаление и способы утилизации.
- •Физические процессы взаимодействия гамма излучения с веществом.
- •Закон поглощения гамма-излучения, его использование при организации защиты от внешнего облучения.
- •Биологическое действие инкорпорированных радионуклидов. Способы, ускоряющие выведение радиоактивных веществ из организма животных.
- •Понятие о толщине слоя препарата и его использование в радиометрии.
- •10.Понятие о радиоактивности. Типы ядерных превращений
- •11.Взаимодействие альфа и бета излучений с веществом. Способы их обна-ружения и регистрации.
- •14.Характеристика радиометрических приборов, применяемых для определения радиоактивности кормов и продуктов животноводства.
- •15.Миграция радионуклидов по объектам биосферы, особенности миграции по кормовым цепочкам.
- •18.Первичные физические, физико-химические процессы в тканях, лежащие в основе лучевых поражений организма.
- •19. Возможности использование радиационной технологии в с/х.
- •20.Взаимодействие бета излучений с веществом, способы и средства защиты от них.
- •21. Порядок хозяйственного использования животных при внутреннем поражении радиоактивными веществами.
- •22. Рабочая (счетная) характеристика газоразрядных счетчиков. Порядок ее определения.
- •23. Особенности клинической картины острой лучевой болезни при внутренннем облучении.
- •24.Цели и задачи радиационной безопасности. Принципы защиты от внешнего облучения.
- •25.Доза излучения, виды доз, мощность дозы, единицы измерения дозы.
- •26.Пути поступление, распределения, накопления и вывдения радионуклеидов из организма животных.
- •27.Детекторы ионизирующих излучений. Устройство, классификация, принцип работы.
- •28. Эффективность счета. Условия радиометрии препаратов, влияющих на эффективность счета.
- •30. Принципы защиты при работе с закрытыми и открытыми источниками ионизирующих излучений.
- •31. Спектрометрические методы радиационной экспертизы, их классификация, физич основы, преимущества.
- •32. Особенности течения лучевой болезни у с/х животных различных видов.
- •33. Индивидуальный дозиметрический контроль. Методы и средства его осуществления.
- •34. Свойства корпускулярных ядерных излучений (альфа, бета), их оценка с позиций регистрации, защиты, биологического действия.
- •35. Пути поступления, распределение и выведение из организма р/акт веществ, их значение при ветеринарно-санитарной экспертизе туш и органов пораженных животных.
- •36. Применение радионуклидов для диагностики и изучения функционального состояния органов и система организма.
- •37. Типы ядерных превращений, их характеристика.
- •38.Влияние ионизирующего излучения на нуклеиновый, белковый и липидный обмены.
- •39. Методы радиационного контроля объектов ветеринарного надзора( радиометрические, спектрометрические, радиохимические) их характеристика и порядок осуществления.
- •40. Понятие об эталоне, его использование в радиометрии и радиационной экспертизе. Требования, предъявленные к эталону.
- •41.Относительная радиочувствительность клеток и тканей организма и ее значение при разработке предельно-допустимых уровней облучения.
- •43.Принцип расчета дозы при общем внешнем и инкорпорированном облучении.
- •44.Особенности проведения лечебных мероприятий при попадании радиоактивных веществ в организм животного.
- •45.Полевая радиометрия и дозиметрия. Цели и задачи, порядок осуществления.
- •46. Сцинтилляционный метод регистрации ядерных излучений. Его достоинства и недостатки, практическое значение.
- •47. Физические процессы взаимодействия альфа и бета- частиц с веществом.
- •48. Закон ослабления бета-излучения и применения его в радиометрии и при организации радиационной защиты.
- •52.Физические и биологические свойства. Важнейшие продукты ядерного деления (Стронций- 90,цезий -137, йод – 131).
- •54. Явление радиоактивности и ее виды. Единицы измерения радиоактивности.
- •56. Клиническая картина острой формы лучевой болезни при внешних облучениях.
- •58 Клиника и патогенез хронической лучевой болезни
- •59.Экспрессный метод определения объемной и удельной активности гамма-излучающих нуклиотидов. Средства его осуществления
- •60.Характеристика гамма-излучения с позиции регистрации, защиты и биологического действия
- •61. Профилактика и лечение животных при общем внешнем гамма-облучении
- •62.Ветеринарно-санитарная экспертиза продуктов животноводства при радиационных поражениях
- •63.История развития радиобиологии. Предмет и задачи рб
- •64.Теории косвенного и опосредованного действия ионизирующих излучений
- •65.Способы дезактивации различных объектов при загрязнении радионуклидами
- •66.Закон радиоактивного распада и практическое использование его в радиометрии и радиационной экспертизе
- •67. Современные представления о механизме биологического действия ионизирующих излучений.
- •68. Экспрессный метод определения объемной и удельной активности бета-излучающих нуклидов, средства его осуществления.359
- •70. Характеристика основных источников радиоактивного фона, порядок его измерения и роль в эволюции в живой природе
- •70. Диагностика и прогноз лучевой болезни
- •72. Физическая характеристика атома и входящих в его состав элементарных частиц. Причина нестабильности атомов
- •73. Теория мишеней. Стохастическая теория. Их основные положения и значения для развития радиобиологии
- •74. Методы прижизненного контроля радиоактивного загрязнения с/х животных
- •75.Синдромы острой лучевой болезни, их объяснения
- •76. Способы и средства защиты при работе с альфа- и бета-излучающими источниками.
- •77. Обоснование методов детектирования ядерных излучений , их сравнительная характеристика.
- •78. Принципы радиоиммунологического анализа и применение его в ветеринарии.
- •79. Меры снижения перехода стронция-90 и цезия-137 из почв в продукцию растениеводства и животноводства.
37. Типы ядерных превращений, их характеристика.
Наличие сил связи в ядре зависит от количества нуклонов и соответствия между ними. Коэфф стабильности – отношение между нейтронами и протонами. Если отношение для данного элемента будет больше или меньше константы, то ядро будет нестабильным. Избыток или недостаток нейтронов позволяет предсказать вид р/акт распада. При недостатке нейтронов и избытке протонов – альфа распад; при избытке нейтронов – бета распад. При р/акт распаде ябро одного атома превращается в ядро другого с другими хим и физич свойствами.
Р/акт распад – самопроизвольное превращение ядра, приводящее к изменению его массы, заряда или энергетического состояния.
Различают альфа, бета и гамма-распад и спокойное деление ядер.
Альфа –распад – имеет место при недостатке нейтронов или избытке протонов. При альфа-распада масса уменьшается на 4, заряд ↓на 2, смещается на 2 клетки влево.
Бета-распад – если число нейтронов превышает заданное. ↑количество протонов, ↓ количество нейтронов. Возможны 3 варианта: 1) электронный, 2) позитронный, 3) лямбда-захват.
При электронном бета-распаде нейтрон превращается в протон, из ядра выпускается электрон. При этом заряд ↑ на 1, масса не изменяется, смещение дочернего элемента на 1 клетку вправо.
Позитронный распад – у нейтрально-заряженных ядер. Протон превращается в нейтрон, масса не изменяется, заряд ↓ на 1, сдвиг влево на 1 клетку. Позитрон испускает два гамма-кванта. Причина распада – избыток протонов.
Лямбда-захват – захват протона и нейтрона из лямбда-уровня. В результате протон превращается в нейтрон и нитрино. Новый элемент занимает положение на 1 клетку левее. Вакантное место занимается электронами из более отдаленных уровней. Атом остается эл-нейтрален.
Явление внутренней электронной конверсии – происходит при бета-распаде. Иногда возбуждение ядра передается на гамма-кванту, а одному из электронов из ближайшей электронной оболочки. Тогда вместо гамма-кванта испускаются так называемые конверсионные электроны. На вакантное место переходит электрон из более дальней оболочки, испуская рентгеновское излучение.
38.Влияние ионизирующего излучения на нуклеиновый, белковый и липидный обмены.
Ионизация молекул при действии на них ионизирующих излучений приводит к инактивации или говоря иначе, полной или частичной утрате функциональной активности биологических молекул. Инактивация органических молекул, в т.ч. макромолекул, может происходить в результате прямого или косвенного (опосредованного) воздействия на них ионизирующих излучений. Если инактивация молекулы произошла в результате непосредственного поглощения ею энергии кванта или частицы, то говорят о прямом действии ионизирующего излучения. Если инактивация макромолекулы происходит в результате химического взаимодействия ее с высокореакционными продуктами, возникшими в ее окружении при действии радиации, говорят о непрямом действии ионизирующего излучения.
Прямое действие ионизирующих излучений на макромолекулы заключается в сложной последовательности событий, происходящих от момента поглощения энергии молекулой и до появления стойких изменений в ее структуре и функционировании. Условно этот процесс можно разделить на 3 стадии. На первой, физической стадии происходит поглощение энергии кванта или частицы молекулой, появление возбужденных и ионизированных молекул, неравномерно распределенных в пространстве. Эти процессы протекают очень быстрой завершаются за 10-16 - 10-13 с. Вторая, физико-химическая стадия, включает различные реакции трансформации и перераспределения избыточной энергии молекул. На этой стадии появляются высокореакционные продукты радиолиза различных соединений: ионы, радикалы. Время протекания второй стадии составляет за 10-13 - 10-10 с. В течение третьей, химической стадии, ионы и радикалы взаимодействуют друг с другом и с окружающими молекулами, образуя различные типы структурных повреждений. Эти реакции протекают в течение 10-6 - 10-3 с.
Повреждения структуры молекул приводят к изменениям функциональных свойств соответствующих макромолекул: белков, нуклеиновых кислот, липидов. Например, повреждение структуры нуклеотида в молекуле ДНК, может остановить процесс репликации, аминокислоты в молекуле белка- потере ферментативной активности. Конечно, к настоящему этапу развития биологии мы пока не в состоянии описать весь круг функциональных признаков, определяющих роль всех макромолекул в жизнедеятельности клетки и организма. Однако, в любом классе макромолекул (белках, НК, липидах, полисахаридах) есть четко охарактеризованные представители, обладающие четко определенными функциями. В качестве примера среди белков можно привести ферменты трипсин, химотрипсин, рибонуклеаза А, для которых известны мельчайшие детали структурной организации и четко определены выполняемые функции.
Анализируя инактивирующее влияние ионизирующих излучений на ферменты, прежде всего, определяются такие их свойства, как активность, субстратная специфичность, чувствительность к модификаторам активности. Изменение этих и некоторых других показателей в результате облучения означает инактивацию фермента. В опытах с молекулами нуклеиновых кислот критерием инактивации служит изменение инфекционности этих молекул, их трансформирующей активности и способности служить матрицей для синтеза полинуклеотидов.