
- •История Искусственного Интеллекта.
- •Философские мыли по созданию ии.
- •1.2.Начальные стадии науки о ии.
- •1.3. Наука ии в ссср.
- •Направления и стороны изучений.
- •2.1 Понимание проблемы ии.
- •2.2 Тест Тьюринга и интуитивный подход.
- •2.3 Символьный подход
- •2.4 Логический подход.
- •Модели и области исследования.
- •3.6 Машинное творчество.
- •4. Современный Искусственный Интеллект.
- •Применение.
2.3 Символьный подход
Исторически символьный подход был первым в эпоху цифровых машин, так как именно после создания Лисп, первого языка символьных вычислений, у его автора возникла уверенность в возможности практически приступить к реализации этими средствами интеллекта. Символьный подход позволяет оперировать слабоформализованными представлениями и их смыслами.
Успешность и эффективность решения новых задач зависит от умения выделять только существенную информацию, что требует гибкости в методах абстрагирования. Тогда как обычная программа устанавливает один свой способ интерпретации данных, из-за чего её работа и выглядит предвзятой и чисто механической. Интеллектуальную задачу в этом случае решает только человек, аналитик или программист, не умея доверить этого машине. В результате создается единственная модель абстрагирования, система конструктивных сущностей и алгоритмов. А гибкость и универсальность выливается в значительные затраты ресурсов для не типичных задач, то есть система от интеллекта возвращается к грубой силе.
Основная особенность символьных вычислений — создание новых правил в процессе выполнения программы. Тогда как возможности не интеллектуальных систем завершаются как раз перед способностью хотя бы обозначать вновь возникающие трудности. Тем более эти трудности не решаются и наконец компьютер не совершенствует такие способности самостоятельно.
Недостатком символьного подхода является то, что такие открытые возможности воспринимаются не подготовленными людьми как отсутствие инструментов. Эту, скорее культурную проблему, отчасти решает логическое программирование.
2.4 Логический подход.
Логический подход к созданию систем искусственного интеллекта основан на моделировании рассуждений. Теоретической основой служит логика. Логический подход может быть проиллюстрирован применением для этих целей языка и системы логического программирования Пролог. Программы, записанные на языке Пролог, представляют наборы фактов и правил логического вывода без жесткого задания алгоритма как последовательности действий, приводящих к необходимому результату.
2.5 Агентно-ориентированный подход.
Последний подход, развиваемый с начала 1990-х годов, называется агентно-ориентированным подходом, или подходом, основанным на использовании интеллектуальных (рациональных) агентов. Согласно этому подходу, интеллект — это вычислительная часть (грубо говоря, планирование) способности достигать поставленных перед интеллектуальной машиной целей. Сама такая машина будет интеллектуальным агентом, воспринимающим окружающий его мир с помощью датчиков, и способной воздействовать на объекты в окружающей среде с помощью исполнительных механизмов.
Этот подход акцентирует внимание на тех методах и алгоритмах, которые помогут интеллектуальному агенту выживать в окружающей среде при выполнении его задачи. Так, здесь значительно тщательнее изучаются алгоритмы поиска пути и принятия решений.
2.6 Гибридный подход.
Под гибридной интеллектуальной системой (ГиИС) принято понимать систему, в которой для решения задачи используется более одного метода имитации интеллектуальной деятельности человека.
Термин «интеллектуальные гибридные системы» появился в 1992 г. Авторы вкладывали в него смысл гибридов интеллектуальных методов, таких как экспертные системы, нейросети и генетические алгоритмы. Экспертные системы представляли символьные, а искусственные нейронные сети и генетические алгоритмы — адаптивные методы искусственного интеллекта. Однако, в основном, новый термин касался достаточно узкой области интеграции — экспертные системы и нейросети.
«Гибридный подход» предполагает, что только синергетическая комбинация нейронных и символьных моделей достигает полного спектра когнитивных и вычислительных возможностей (способностей).
Термин «гибрид» понимается как система, состоящая из двух или более интегрированных подсистем, каждая из которых может иметь различные языки представления и методы вывода. Подсистемы объединяются вместе семантически и по действию каждая с каждой.
Ученые Центра Искусственного интеллекта Cranfield University (Англия) определяют «гибридную интегрированную систему» как систему, использующую более чем одну компьютерную технологию. Причем технологии накрывают такие области, как системы, основанные на знаниях, коннекционистские модели и базы данных. Интеграция технологий дает возможность использовать индивидуальную силу технологии для решения специфических частей задачи. Выбор технологий, внедряемых в гибридную систему, зависит от особенностей решаемой задачи.
Специалисты из University of Sanderland (Англия), входящие в группу HIS, определяют «гибридные информационные системы» как большие, сложные системы, которые «бесшовно» (цельно) интегрируют знания и традиционную обработку. Они могут предоставлять возможность хранить, искать и манипулировать данными, знаниями и традиционными технологиями. Гибридные информационные системы будут значительно более сильными, чем экстраполяции концепций существующих систем.
Научная область ГиИС включает исследование автономных методов для определения их преимуществ и недостатков, отношений интеграции во многом определяющих состав, архитектуру и процессы обмена и обработки информации в гибридах, идентификацию задач соответствующих гибридным системам, разработку протоколов для коммуникации между компонентами и многопроцессорные архитектуры. Цели исследований ГиИС включают создание методов увеличения эффективности, выразительной силы и силы вывода интеллектуальных систем, преимущественно более полных, разрабатываемых с меньшими усилиями разработки, чем приложения, использующие автономные методы. В фундаментальной перспективе ГиИС могут помочь понять когнитивные механизмы и модели.