
- •Означення та приклади подій: випадкова, достовірна, неможлива, елементарна, складна.
- •Означення та приклад повної групи подій та простору елементарних подій.
- •Класичне означення ймовірності випадкової події.
- •Сформулювати аксіоми класичної теорії ймовірностей.
- •Дати означення та вказати властивості перестановки, сполучення, комбінації елементів.
- •Дати означення відносної частоти появи події.
- •Дати геометричне та статистичне означення ймовірності.
- •Дати визначення умовної ймовірності.
- •Формула множення ймовірностей для залежних та незалежних подій.
- •Формула для обчислення появи хоча б однієї події .
- •Формула повної ймовірності.
- •Формули Байєса.
- •Означення експерименту за схемою Бернуллі.
- •Формула Бернуллі для обчислення ймовірностей, умова використання. Наслідки.
- •Найімовірніше число появ події в схемі Бернуллі.
- •Сформулювати локальну теорему Муавра-Лапласа.
- •Властивості функції Лапласа:
- •Означення випадкової величини, дискретної та неперервної випадкових величин.
- •Закон розподілу випадкової величини.
- •Інтегральна функція розподілу випадкової величини: означення. Властивості.
- •Диференціальна функція розподілу (щільність розподілу) випадкової величини: означення. Властивості.
- •Математичне сподівання випадкової величини: означення, властивості.
- •Дисперсія та середньоквадратичне відхилення випадкової величини: означення, властивості.
- •Властивості дисперсії
- •Мода, медіана випадкової величини.
- •Початкові та центральні моменти.
- •Асиметрія, ексцес.
- •Означення багатовимірної випадкової величини.
- •Означення закону розподілу багатовимірної випадкової величини.
- •Основні числові характеристики для системи двох дискретних випадкових величин.
- •Коефіцієнт кореляції та його властивості.
- •Функція розподілу ймовірностей та щільність ймовірностей системи
- •Двовимірний нормальний закон розподілу.
- •Закон розподілу Бернулі
- •Біноміальний закон розподілу двв. Числові характеристики.
- •Пуасонівський закон розподілу двв, числові характеристики.
- •Геометричний закон розподілу двв, числові характеристики.
- •Гіпергеометричний закон розподілу двв, числові характеристики.
- •Рівномірний закон розподілу нвв.
- •Нормальний закон розподілу.
- •Показниковий закон та його використання в теорії надійності та теорії черг.
- •Розподіл
- •Розподіл Стьюдента. Розподіл Фішера. (45-46)
- •Правило трьох сигм. Логарифмічний нормальний закон.
- •Функції одного дискретного випадкового аргументу.
- •.Числові характеристики функції одного дискретного випадкового аргументу.
- •Функції неперервного випадкового аргументу та їх числові характеристики.
- •Функції двох випадкових аргументів та їх числові характеристики.
- •Числові характеристики функції дискретного випадкового аргументу
- •Нерівності Чебишева та їх значення.
- •Теорема Чебишева.
- •Теорема Бернуллі.
- •Центральна гранична теорема теорії ймовірностей ( теорема Ляпунова) та її використання у математичній статистиці.
- •Предмет і задачі математичної статистики.
- •Утворення вибірки. Генеральна та вибіркова сукупність.
- •Статистичні розподіли вибірок.
- •Емпірична функція розподілу, гістограма та полігон.
- •Числові характеристики: вибіркова середня, дисперсія вибірки, середньоквадратичне відхилення.
- •Мода й медіана, емпіричні початкові та центральні моменти, асиметрія та ексцес.
- •Дати визначення статистичної оцінки.
- •Точкові та інтервальні статистичні оцінки.
- •Дати визначення довірчого інтервалу.
- •Що таке нульова та альтернативна статистичні гіпотези.
- •Перевірка (правдивості нульової) гіпотези про нормальний закон розподілу ознаки генеральної сукупності.
- •Емпіричні та теоретичні частоти.
- •Критерії узгодження Пірсона та Колмогорова.
- •Помилки першого та другого роду.
- •Статистичний критерій. Критична область.
- •Дати означення моделі експерименту.
- •Дати поняття одно факторний аналіз.
- •Загальна дисперсія, між групова та внутрішньогрупова дисперсії.
- •. Поняття про функціональну, статистичну та кореляційну залежності.
- •Рівняння лінійної регресії. Довірчий інтервал для лінії регресії
- •Вибірковий коефіцієнт кореляції.
- •Множинна регресія, множинний коефіцієнт кореляції та його властивості.
- •Нелінійна регресія.
- •85) Визначення та приклади ланцюгів Маркова.
- •Інтуїтивне визначення
- •Формальне визначення
- •Граф переходів ланцюга Маркова
- •86) Ймовірність переходу за n кроків.
- •87) Замкнуті множини станів.
- •88) Класифікація станів. Неповоротний стан.
- •1. Ергодичний стан
- •2. Нестійкі стани
- •3. Поглинальні стани
- •89) Ергодична властивість неперіодичних ланцюгів. Стаціонарний розподіл.
- •90) Періодичні ланцюги.
- •91) Загальний марковський процес (Ланцюг Маркова з неперервним часом).
- •92) Гранична поведінка перехідних ймовірностей ланцюга Маркова.
- •93) Гілчастий процес.
- •94) Алгебраїчний підхід вивчення скінченних ланцюгів Маркова.
- •96) Випадковий проце, стаціонарний у широкому сенсі.
- •97) Аналіз кореляційної функції. Ергодичність.
- •100) Рівняння Колмогорова - Чепмена
Закон розподілу випадкової величини.
Співвідношення, що встановляє зв’язок між можливими значеннями випадкової величини та відповідними їм імовірностями, називають законом розподілу випадкової величини.
Закон розподілу можна задавати таблицею, формулою, графіком.
У разі табличної форми запису закону подається послідовність можливих значень випадкової величини Х, розміщених у порядку зростання, та відповідних їм імовірностей:
Х = хі |
х1 |
х2 |
х3 |
...... |
хk |
Р(Х = хі) = рі |
р1 |
р2 |
р3 |
..... |
рk |
Оскільки випадкові
події (Х = хj)
і (Х = хm)
є між собою несумісними (Х =
хі)
∩ (Х = хm)
= ,
то
- умова нормування для дискретної
випадкової величини Х. Закон розподілу
таблицею називають рядом розподілу.
Інтегральна функція розподілу випадкової величини: означення. Властивості.
Закон розподілу ймовірностей можна подати ще в одній формі, яка придатна і для дискретних, і для неперервних випадкових величин, а саме: як функцію розподілу ймовірностей випадкової величини F(х), так звану інтегральну функцію.
Функцію аргументу х, що визначає ймовірність випадкової події Х < x, називають функцією розподілу ймовірностей: F(x) = P(X < x) - унаслідок експерименту випадкова величина може набути значення, меншого за х .
Розглянемо властивості F(x):
1.
2.
є неспадною функцією, а саме
,
якщо
.
Диференціальна функція розподілу (щільність розподілу) випадкової величини: означення. Властивості.
Для неперервних випадкових величин закон розподілу ймовірностей зручно описувати з допомогою щільності ймовірностей, яку позначають f (x).
Щільністю ймовірностей неперервної випадкової величини Х називається перша похідна від інтегральної функції F(x):
звідки
Оскільки
то добуток f (x) dx
— ймовірність того, що випадкова величина
Х міститиметься у проміжку [х, х + dx], де
.
Геометрично на графіку щільності ймовірності f (x) dx відповідає площа прямокутника з основою dx і висотою f (x).
Властивості f (x)
. Ця властивість випливає з означення щільності ймовірності як першої похідної від F(x) за умови, що F(x) є неспадною функцією.
2. Умова нормування
неперервної випадкової величини Х:
Якщо НВВ Х належить
[a; b], то умовою нормування буде
3. Імовірність
попадання неперервної випадкової
величини в інтервалі
обчислюється за формулою
4. Функція розподілу
ймовірностей неперервної випадкової
величини має вигляд
Математичне сподівання випадкової величини: означення, властивості.
Однією з найчастіше застосовуваних на практиці характеристик є математичне сподівання.
Термін «математичне сподівання» випадкової величини Х є синонімом терміна «середнє значення» випадкової величини X.
Математичним
сподіванням випадкової величини Х,
визначеною на дискретному просторі Ω,
називається величина
Якщо Ω — обмежена
множина, то
.
Якщо простір Ω є
неперервним, то математичним сподіванням
неперервної випадкової величини Х
називається величина
Якщо Ω = (– ;
),
то
Якщо Ω = [a;
b], то
Властивості математичного сподівання
1. Математичне сподівання від сталої величини С дорівнює самій сталій: М (С) = С.
2. М (СХ) = СМ (Х).
Для дискретної
випадкової величини згідно із маємо
.
Для неперервної:
3. Якщо А
і В
є сталими величинами, то
.
Для дискретної
випадкової величини:
.
Для неперервної випадкової величини: