
- •Означення та приклади подій: випадкова, достовірна, неможлива, елементарна, складна.
- •Означення та приклад повної групи подій та простору елементарних подій.
- •Класичне означення ймовірності випадкової події.
- •Сформулювати аксіоми класичної теорії ймовірностей.
- •Дати означення та вказати властивості перестановки, сполучення, комбінації елементів.
- •Дати означення відносної частоти появи події.
- •Дати геометричне та статистичне означення ймовірності.
- •Дати визначення умовної ймовірності.
- •Формула множення ймовірностей для залежних та незалежних подій.
- •Формула для обчислення появи хоча б однієї події .
- •Формула повної ймовірності.
- •Формули Байєса.
- •Означення експерименту за схемою Бернуллі.
- •Формула Бернуллі для обчислення ймовірностей, умова використання. Наслідки.
- •Найімовірніше число появ події в схемі Бернуллі.
- •Сформулювати локальну теорему Муавра-Лапласа.
- •Властивості функції Лапласа:
- •Означення випадкової величини, дискретної та неперервної випадкових величин.
- •Закон розподілу випадкової величини.
- •Інтегральна функція розподілу випадкової величини: означення. Властивості.
- •Диференціальна функція розподілу (щільність розподілу) випадкової величини: означення. Властивості.
- •Математичне сподівання випадкової величини: означення, властивості.
- •Дисперсія та середньоквадратичне відхилення випадкової величини: означення, властивості.
- •Властивості дисперсії
- •Мода, медіана випадкової величини.
- •Початкові та центральні моменти.
- •Асиметрія, ексцес.
- •Означення багатовимірної випадкової величини.
- •Означення закону розподілу багатовимірної випадкової величини.
- •Основні числові характеристики для системи двох дискретних випадкових величин.
- •Коефіцієнт кореляції та його властивості.
- •Функція розподілу ймовірностей та щільність ймовірностей системи
- •Двовимірний нормальний закон розподілу.
- •Закон розподілу Бернулі
- •Біноміальний закон розподілу двв. Числові характеристики.
- •Пуасонівський закон розподілу двв, числові характеристики.
- •Геометричний закон розподілу двв, числові характеристики.
- •Гіпергеометричний закон розподілу двв, числові характеристики.
- •Рівномірний закон розподілу нвв.
- •Нормальний закон розподілу.
- •Показниковий закон та його використання в теорії надійності та теорії черг.
- •Розподіл
- •Розподіл Стьюдента. Розподіл Фішера. (45-46)
- •Правило трьох сигм. Логарифмічний нормальний закон.
- •Функції одного дискретного випадкового аргументу.
- •.Числові характеристики функції одного дискретного випадкового аргументу.
- •Функції неперервного випадкового аргументу та їх числові характеристики.
- •Функції двох випадкових аргументів та їх числові характеристики.
- •Числові характеристики функції дискретного випадкового аргументу
- •Нерівності Чебишева та їх значення.
- •Теорема Чебишева.
- •Теорема Бернуллі.
- •Центральна гранична теорема теорії ймовірностей ( теорема Ляпунова) та її використання у математичній статистиці.
- •Предмет і задачі математичної статистики.
- •Утворення вибірки. Генеральна та вибіркова сукупність.
- •Статистичні розподіли вибірок.
- •Емпірична функція розподілу, гістограма та полігон.
- •Числові характеристики: вибіркова середня, дисперсія вибірки, середньоквадратичне відхилення.
- •Мода й медіана, емпіричні початкові та центральні моменти, асиметрія та ексцес.
- •Дати визначення статистичної оцінки.
- •Точкові та інтервальні статистичні оцінки.
- •Дати визначення довірчого інтервалу.
- •Що таке нульова та альтернативна статистичні гіпотези.
- •Перевірка (правдивості нульової) гіпотези про нормальний закон розподілу ознаки генеральної сукупності.
- •Емпіричні та теоретичні частоти.
- •Критерії узгодження Пірсона та Колмогорова.
- •Помилки першого та другого роду.
- •Статистичний критерій. Критична область.
- •Дати означення моделі експерименту.
- •Дати поняття одно факторний аналіз.
- •Загальна дисперсія, між групова та внутрішньогрупова дисперсії.
- •. Поняття про функціональну, статистичну та кореляційну залежності.
- •Рівняння лінійної регресії. Довірчий інтервал для лінії регресії
- •Вибірковий коефіцієнт кореляції.
- •Множинна регресія, множинний коефіцієнт кореляції та його властивості.
- •Нелінійна регресія.
- •85) Визначення та приклади ланцюгів Маркова.
- •Інтуїтивне визначення
- •Формальне визначення
- •Граф переходів ланцюга Маркова
- •86) Ймовірність переходу за n кроків.
- •87) Замкнуті множини станів.
- •88) Класифікація станів. Неповоротний стан.
- •1. Ергодичний стан
- •2. Нестійкі стани
- •3. Поглинальні стани
- •89) Ергодична властивість неперіодичних ланцюгів. Стаціонарний розподіл.
- •90) Періодичні ланцюги.
- •91) Загальний марковський процес (Ланцюг Маркова з неперервним часом).
- •92) Гранична поведінка перехідних ймовірностей ланцюга Маркова.
- •93) Гілчастий процес.
- •94) Алгебраїчний підхід вивчення скінченних ланцюгів Маркова.
- •96) Випадковий проце, стаціонарний у широкому сенсі.
- •97) Аналіз кореляційної функції. Ергодичність.
- •100) Рівняння Колмогорова - Чепмена
96) Випадковий проце, стаціонарний у широкому сенсі.
Випадковий процес Х (t) називають стаціонарним у широкому сенсі, якщо
m (t) = m (t + Δ), K (t, t ') = K (t + Δ, t' + Δ) , (T € T, t '€ T, t + Δ € T), t' + Δ € T)
Очевидно, що з стаціонарності у вузькому сенсі слід стаціонарність у широкому сенсі.
З формул:
m (t) = m (t + Δ), K (t, t ') = K (t + Δ, t' + Δ) , (T € T, t '€ T, t + Δ € T), t' + Δ € T)
Слід, що для процесу, стаціонарного в широкому сенсі, можна записати
m (t) = m x (0) = const; D (t) = K (t, t) = K (0,0) = const; K (t, t ') = K (t - t', 0) = K (0, t '- t)
Таким чином, для процесу, стаціонарного в широкому сенсі, математичне очікування і дисперсія не залежать від часу, а K (t, t ') являє собою функцію вида:
K (t, t ') = k (τ) = k (- τ), τ = t' - t.
Видно, що k (τ) - парна функція, при цьому
K (0) = В = σ 2; | k (τ) | ≤ k (0); Σ Σ ά i α j k (t i - t j) ≥ 0
Тут D - дисперсія стаціонарного процесу
Х (t), α i (I = 1, n) - довільні числа.
97) Аналіз кореляційної функції. Ергодичність.
Кореляційний аналіз – це статистичне дослідження (стохастичної) залежності між випадковими величинами (англ. correlation – взаємозв’язок). У найпростішому випадку досліджують дві вибірки (набори даних), у загальному – багатовимірні комплекси (групи) геологічних параметрів або об’єктів.
Мета кореляційного аналізу – забезпечити отримання деякої інформації про одну змінну за допомогою іншої змінної. В випадках, коли можливе досягнення мети, говорять, що змінні корелюють. В загальному вигляді сприйняття гіпотези про наявність кореляції означає, що зміна значення змінної А відбудеться одночасно з пропорційною зміною значення В.
Мірою залежності між експериментальними наборами даних є числа – коефіцієнти зв’язку.
Головні завдання кореляційного аналізу:
1) оцінка за вибірковими даними коефіцієнтів кореляції;
2) перевірка значущості вибіркових коефіцієнтів кореляції або кореляційного відношення;
3) оцінка близькості виявленого зв’язку до лінійного;
4) побудова довірчого інтервалу для коефіцієнтів кореляції.
Визначення сили та напрямку взаємозв’язку між змінними є однією з важливих проблем аналізу даних. В загальному випадку для цього застосовують поняття кореляції.
Ергоди́чність — спеціальна властивість деяких (динамічних) систем, яка полягає в тому, що в процесі еволюції такої системи майже кожна точка її з певною ймовірністю проходить поблизу будь-якої іншої точки системи. Тоді при розрахунках час, який важко розраховувати, можна замінити фазовими (просторовими) показниками. Система, в якій фазові середні збігаються з часовими, називається ергодичною.
98)
99)
100) Рівняння Колмогорова - Чепмена
Рівняння Колмогорова - Чепмена для
однопараметричного
сімейства безперервних лінійних
операторів
в
топологічному векторному просторі
виражає напівгрупова
властивість:
Найчастіше
цей термін використовується в
теорії однорідних марківських випадкових
процесів,
де
-
Оператор, що перетворює розподіл
ймовірностей в початковий момент часу
в розподіл ймовірності в момент
часу
(
).
Для
неоднорідних процесів розглядаються
двохпараметричного сімейства
операторів
,
Перетворюючих розподіл ймовірностей
в момент часу
в
розподіл ймовірності в момент часу
Для
них рівняння Колмогорова-Чепмена має
вигляд
Для
систем з дискретним часом
параметри
приймають натуральні
значення.