
- •1.1.1.2.Определение компилятора. Отличие компилятора от транслятора
- •1.1.1.3.Определение интерпретатора. Разница между интерпретаторами и трансляторами
- •1.1.1.4.Назначение трансляторов, компиляторов и интерпретаторов. Примеры реализации
- •1.1.2Этапы трансляции. Общая схема работы транслятора
- •1.1.3Понятие прохода. Многопроходные и однопроходные компиляторы
- •1.1.4Интерпретаторы. Особенности построения интерпретаторов
- •1.2Таблицы идентификаторов. Организация таблиц идентификаторов
- •1.2.1Назначение и особенности построения таблиц идентификаторов
- •1.2.2Простейшие методы построения таблиц идентификаторов
- •1.2.3Хэш-функции и хэш-адресация
- •1.2.3.1.Принципы работы хэш-функций
- •1.2.3.2.Построение таблиц идентификаторов на основе хэш-функции
- •1.2.4Комбинированные способы построения таблиц идентификаторов
- •1.3Лексические анализаторы (сканеры). Принципы построения сканеров
- •1.3.1Назначение лексического анализатора
- •1.3.2Принципы построения лексических анализаторов
- •1.3.2.1.Определение границ лексем
- •1.3.2.2.Выполнение действий, связанных с лексемами
- •1.3.3Построение лексических анализаторов
1.1.4Интерпретаторы. Особенности построения интерпретаторов
Интерпретатор — это программа, которая воспринимает входную программу на исходном языке и выполняет ее. Как уже было сказано выше, основное отличие интерпретаторов от трансляторов и компиляторов заключается в том, что интерпретатор не порождает результирующую программу, а просто выполняет исходную программу.
Термин «интерпретатор» (interpreter), как и «транслятор», означает «переводчик». С точки зрения терминологии эти понятия схожи, но с точки зрения теории формальных языков и компиляции между ними большая принципиальная разница. Если понятия «транслятор» и «компилятор» почти неразличимы, то с понятием «интерпретатор» их путать никак нельзя.
Простейшим способом реализации интерпретатора можно было бы считать вариант, когда исходная программа сначала полностью транслируется в машинные команды, а затем сразу же выполняется. В такой реализации интерпретатор, по сути, мало бы чем отличался от компилятора с той лишь разницей, что результирующая программа в нем была бы недоступна пользователю. Недостатком такого интерпретатора было бы то, что пользователь должен был бы ждать компиляции всей исходной программы прежде, чем начнется ее выполнение. По сути, в таком интерпретаторе не было бы никакого особого смысла — он не давал бы никаких преимуществ по сравнению с аналогичным компилятором.
Поэтому подавляющее большинство интерпретаторов действует так, что исполняет исходную программу последовательно, по мере ее поступления на вход интерпретатора. Тогда пользователю не надо ждать завершения компиляции всей исходной программы. Более того, он может последовательно вводить исходную программу и тут же наблюдать результат ее выполнения по мере ввода команд.
При таком порядке работы интерпретатора проявляется существенная особенность, которая отличает его от компилятора, — если интерпретатор исполняет команды по мере их поступления, то он не может выполнять оптимизацию исходной программы. Следовательно, фаза оптимизации в общей структуре интерпретатора будет отсутствовать. В остальном же она будет мало отличаться от структуры аналогичного компилятора. Следует только учесть, что на последнем этапе — генерации кода — машинные команды не записываются в объектный файл, а выполняются по мере их порождения.
Отсутствие шага оптимизации определяет еще одну особенность, характерную для многих интерпретаторов: в качестве внутреннего представления программы в них очень часто используется обратная польская запись. Эта удобная форма представления операций обладает только одним существенным недостатком — она плохо поддается оптимизации. Но в интерпретаторах именно это как раз и не требуется.
В обратной польской записи знаки выражений записываются непосредственно за операндами. Операнды следуют в том же порядке, а знаки операций – строго в порядке их выполнения. Здесь не требуется учитывать приоритет операций. Скобки не употребляются. Обратная польская запись эффективна, когда используется стек. Например,
6+7*(10+4)=104 ---- 6 7 10 4 + * +
6+(7+10)*4=74 ------ 6 7 10 + 4 * +
Далеко не все языки программирования допускают построение интерпретаторов, которые могли бы выполнять исходную программу по мере поступления команд. Для этого язык должен допускать возможность существования компилятора, выполняющего разбор исходной программы за один проход. Кроме того, язык не может интерпретироваться по мере поступления команд, если он допускает появление обращений к функциям и структурам данных раньше их непосредственного описания. Поэтому данным методом не могут интерпретироваться такие языки, как С и Pascal.
Отсутствие шага оптимизации ведет к тому, что выполнение программы с помощью интерпретатора является менее эффективным, чем с помощью аналогичного компилятора. Кроме того, при интерпретации исходная программа должна заново разбираться всякий раз при ее выполнении, в то время как при компиляции она разбирается только один раз, а после этого всегда используется объектный файл. Таким образом, интерпретаторы всегда проигрывают компиляторам в производительности.
Преимуществом интерпретатора является независимость выполнения программы от архитектуры целевой вычислительной системы. В результате компиляции получается объектный код, который всегда ориентирован на определенную архитектуру. Для перехода на другую архитектуру целевой вычислительной системы программу требуется откомпилировать заново. А для интерпретации программы необходимо иметь только ее исходный текст и интерпретатор с соответствующего языка.
Интерпретаторы долгое время значительно уступали в распространенности компиляторам. Как правило, интерпретаторы существовали для ограниченного круга относительно простых языков программирования (таких, например, как Basic). Высокопроизводительные профессиональные средства разработки программного обеспечения строились на основе компиляторов.
Новый импульс развитию интерпретаторов придало распространение глобальных вычислительных сетей. Такие сети могут включать в свой состав ЭВМ различной архитектуры, и тогда требование единообразного выполнения на каждой из них текста исходной программы становится определяющим. Поэтому с развитием глобальных сетей и распространением всемирной сети Интернет появилось много новых систем, интерпретирующих текст исходной программы. Многие языки программирования, применяемые во Всемирной сети, предполагают именно интерпретацию текста исходной программы без порождения объектного кода.
В современных системах программирования существуют реализации программного обеспечения, сочетающие в себе и функции компилятора, и функции интерпретатора — в зависимости от требований пользователя исходная программа либо компилируется, либо исполняется (интерпретируется). Кроме того, некоторые современные языки программирования предполагают две стадии разработки: сначала исходная программа компилируется в промежуточный код (некоторый язык низкого уровня), а затем этот результат компиляции выполняется с помощью интерпретатора данного промежуточного языка. Более подробно варианты таких систем рассмотрены в главе «Современные системы программирования».
Широко распространенным примером интерпретируемого языка может служить HTML (Hypertext Markup Language) — язык описания гипертекста. На его основе в настоящее время функционирует практически вся структура сети Интернет. Другой пример — языки Java и JavaScript — сочетают в себе функции компиляции и интерпретации. Текст исходной программы компилируется в некоторый промежуточный двоичный код, не зависящий от архитектуры целевой вычислительной системы, этот код распространяется по сети и выполняется на принимающей стороне — интерпретируется.