- •Вопрос 1
- •Вопрос 2.
- •Вопрос 3.
- •Вопрос 4.
- •3.Работа гравитационной силы.
- •6. Потенциальные силы
- •8.Связь между потенциальной энергией и силой
- •Вопрос 7.
- •4.Типы движения
- •5.Виды движения
- •6.Законы Кеплера
- •7.Космические скорости
- •Вопрос 8.
- •5.Связь между линейной и угловой скоростью:
- •В опрос 9.
- •Кинетическая энергия вращающегося тела
- •В опрос 10.
- •1.Момент силы
- •2.Работа силы по вращению тела
- •3.Основное уравнение динамики вращательного движения
- •Вопрос 11.
- •1.Закон сохранения механической энергии для твердых тел
- •Вопрос 12.
- •Вопрос 13.
- •1.Неинерциальная система отсчёта
- •3.Определение скорости точки при сложном движении.
- •4.Определение ускорения точки при сложном движении
- •5. Кориолисова сила
- •6. Центробежная сила
- •Вопрос 14.
- •1.Релятивистская механика
- •2.Принцип относительности и законы Ньютона
- •3.Преобразования Галилея
- •Вопрос 15.
- •1.Преобразование Лоренца
- •2.Преобразование скоростей
- •Вопрос 16.
- •Вопрос 17.
- •2.Основные формулы релятивисткой механики:
- •3.Формулы преобразования импульса и энергии:
- •4.Геометрическое представление связи динамических величин:
- •Вопрос 18.
- •Вопрос 19.
- •1 .Пример применения законов сохранения в релятивистской механике: распад нестабильной частицы.
- •2.Определённость величин энергий и импульсов частиц.
- •Вопрос 20.
- •1.Интенсивность теплового движения.
- •2.Температура.
- •3.Хаотичность теплового движения.
- •4.Энтропия.
- •5.Статистический вес и энтропия.
- •Вопрос 21.
- •1.Равновесное состояние.
- •2.Диаграммы состояний.
- •3.Разреженные газы.
- •4.Идеальный газ.
- •5.Природа давления газа.
- •6.Уравнение состояния идеального газа.
- •Вопрос 22
- •1.Механическая форма передачи энергии телу. Работа
- •2.Тепловая форма передачи энергии телу. Теплота
- •3.Первое начало термодинамики
- •Вопрос 23
- •1.Степени свободы молекул
- •2.Закон распределения энергии теплового движения по степеням свободы
- •3.Внутренняя энергия идеального газа
- •Вопрос 24
- •1.Теплоемкость
- •4.Теплоемкость при постоянном объеме
- •5.Теплоемкость при постоянном давлении
- •Вопрос 25.
- •Вопрос 26.
- •Вопрос 27.
- •Вопрос 28.
- •1.Адиабатический процесс в идеальном газе
- •4.Измерение внутренней энергии
- •Вопрос 29.
- •Вопрос 30.
- •2.Барометрическая формула
- •3.Распределение Больцмана
- •4 .Опыт Перрена
- •Вопрос31.
- •Вопрос 32.
- •Вопрос 33.
- •1.Закон о распределении молекул идеального газа по скоростям:
- •Вопрос 34.
- •Вопрос 35.
- •1 Холодильник Рабочее тело .Модель тепловых машин.
- •Нагреватель
- •2.Вечные двигатели I-го и II-го рода.
- •3.Тепловые двигатели, холодильные машины, тепловые насосы.
- •4.Тепловой насос
- •Вопрос 36.
- •3. Неравновесный процесс.
Вопрос 35.
1 Холодильник Рабочее тело .Модель тепловых машин.
Нагреватель
Q1, ΔS Q2 ,ΔS
A
Тепловой машиной называется периодический действующий двигатель, совершающий работу за счет получаемого извне тепла. Любая тепловая машина работает по принципу циклического процесса. Но чтобы при этом была совершена полезная работа, возврат должен быть произведен с наименьшими затратами.
Полезная работа равна разности работ расширения и сжатия.
Обязательными частями тепловой машины являются нагреватель (источник энергии), холодильник, рабочее тело (газ, пар).
От тела температурой Т1, (нагреватель), за цикл отнимается количество теплоты Q1, а телу с более низкой температурой Т2, (холодильнику), за цикл передается количество теплоты Q2 и совершается работа A.
2.Вечные двигатели I-го и II-го рода.
Вечный двигатель первого рода — устройство, способное бесконечно совершать работу без затрат топлива или других энергетических ресурсов. Согласно закону сохранения энергии, все попытки создать такой двигатель обречены на провал. Невозможность осуществления вечного двигателя первого рода постулируется в термодинамике как первое начало термодинамики.
Вечный двигатель второго рода — машина, которая, будучи пущена в ход, превращала бы в работу всё тепло, извлекаемое из окружающих тел. Невозможность осуществления вечного двигателя второго рода постулируется в термодинамике в качестве одной из эквивалентных формулировок второго начала термодинамики.
И первое, и второе начала термодинамики были введены как постулаты после многократного экспериментального подтверждения невозможности создания вечных двигателей, у учёных не остаётся никаких сомнений в том, что данные постулаты верны, и создание вечного двигателя невозможно.
Постулат Кельвина — невозможно создать периодически действующую машину, совершающую механическую работу только за счёт охлаждения теплового резервуара.
Постулат Клаузиуса — самопроизвольный переход теплоты от более холодных тел к более горячим невозможен.
3.Тепловые двигатели, холодильные машины, тепловые насосы.
Тепловой двигатель — устройство, совершающее работу за счет использования внутренней энергии топлива, тепловая машина, превращающая тепло в механическую энергию, использует зависимость теплового расширения вещества от температуры. Действие теплового двигателя подчиняется законам термодинамики. Для работы необходимо создать разность давлений по обе стороны поршня двигателя или лопастей турбины. Для работы двигателя обязательно наличие топлива. Это возможно при нагревании рабочего тела (газа), который совершает работу за счёт изменения своей внутренней энергии. Повышение и понижение температуры осуществляется, соответственно, нагревателем и охладителем.
Работа, совершаемая двигателем, равна:
,
где:
—
количество теплоты,
полученное от нагревателя,
—
количество теплоты,
отданное охладителю.
Коэффициент полезного действия (КПД) теплового двигателя рассчитывается как отношение работы, совершаемой двигателем, к количеству теплоты, полученному от нагревателя:
Полезную работу, совершенную тепловым двигателем за один цикл, можно найти как площадь, ограниченную графиком процесса на плоскости pV.
Холодильная машина
Холодильная машина - устройство, служащее для отвода теплоты от охлаждаемого тела при температуре более низкой, чем температура окружающей среды. Холодильные машины работают по принципу теплового насоса - отнимают теплоту от охлаждаемого тела и с затратой энергии (механической, тепловой и т. д.) передают её охлаждающей среде (обычно воде или окружающему воздуху), имеющей более высокую температуру, чем охлаждаемое тело. Холодильная машина работает по обратному циклу: то есть если проводить цикл в обратном направлении, тепло будет забираться у холодильника и передаваться нагревателю (за счет работы внешних сил).
В этом цикле
,
и
работа, совершаемая над газом, отрицательна,
т.е.
|
|
|
Если рабочее тело совершает обратный цикл, то при этом можно переносить энергию в форме тепла от холодного тела к горячему за счет совершения внешними силами работы.
