
- •50 “Електротехніка, електроніка і мікропроцесорна техніка”
- •1. Вступ до електроніки. Напівпровідники. План
- •Вступ до розділу «Електроніка».
- •Електричні властивості напівпровідників. Уявлення про основи зонної теорії твердого тіла.
- •Власна провідність.
- •Домішкова провідність.
- •2. Використання властивостей електронно-діркового переходу.
- •Напівпровідниковий діод і його застосування. Напівпровідниковий діод
- •Спрямляючі діоди
- •Схеми спрямовувачів.
- •Стабілітрони.
- •Варикап.
- •Тунельний та інші види діодів.
- •3. Транзистори.
- •Класи транзисторів.
- •Устрій та принцип дії біполярного транзистора.
- •Режими роботи біполярного транзистора.
- •Способи включення та характеристики схем включення.
- •Статичні і динамічні характеристики схем включення.
- •Хрест-характеристика транзистора
- •4. Підсилювачі.
- •Підсилювачі.
- •Характеристики підсилювачів
- •Зворотний зв'язок.
- •Електронний генератор синусоїдальних електричних коливань
- • Вступ до модуля “Мікропроцесорна техніка”.
- •Вступ до модуля “Мікропроцесорна техніка”.
- •Уявлення про інтегральні схеми
- •Уявлення про мікропроцесорні засоби
- •Типова структура мікропроцесорного пристрою
- •Загальні відомості про уявлення інформації в мп-системах
- •Додаткова інформація
- •Кодування чисел в мп-системах
- •Логічні операції
- •Логічні елементи мп-систем
- •За способом кодування двійкових змінних електронними сигналами електронні елементи можуть бути імпульсними, потенціальними, імпульсно-потенціальними, фазовими.
- •8. Схемна реалізація логічних елементів.
- • Схемна реалізація логічних функцій на прикладі функцій “не”, “і”, “або”, 3і–не”, “3або–не” та ін.
- •Типи тригерів за способом функціонування.
- •С инхронний однотактний rs–тригер.
- •Синхронний двотактний rs–тригер.
- •Регістри прийому і передачі інформації.
- •Приклади схемної реалізації зсуваючого регістру
- •Виконання порозрядних операцій «логічне додавання», «логічне множення».
- •В иконання порозрядної операції «складання за mod 2».
- •12. Лічильники.
- •Лічильник як вузол мп-системи. Призначення та класифікація
- •Лічильник з безпосередніми зв’язками з послідовним переносом.
- •Лічильник з паралельним переносом.
- •Реверсивний лічильник з послідовним переносом.
- •13. Схеми дешифраторів.
- •Дешифратори. Класифікація.
- •14. Шифратори, мультиплексори та демультиплексори.
- •Шифратори і перетворювачі кодів
- •Мультиплексори
- •Демультиплексор
- •15. Суматор.
- •Суматор як вузол мп-системи. Призначення та класифікація.
- •Однорозрядний комбінаційний суматор.
- •Однорозрядний накопичуючий суматор.
- •Багаторозрядні суматори
- •Оперативні запам’ятовуючі пристрої
- •Постійні запам’ятовуючі пристрої
- •17. Мікропроцесор.
- •Типова структура мікропроцесора.
- •Основні сигнали процесора.
- •А0а15 – виводи мп, які приєднуються до ша мп-системи;
- •D0d7 – двонапрямлені виводи мп, які приєднуються до шд мп-системи;
- •18. Мікропроцесорні системи.
- •Особливості побудови мп-систем
- •Мікропроцесорні засоби в системах керування
- •19. Перетворювачі сигналів.
- •Принцип перетворення напруги в цифровий код.
- •Аналого-цифрові перетворювачі (ацп).
- •Перетворювачі напруги в код.
- •Перетворювачі кута повороту в код.
- •Цифрово-аналогові перетворювачі.
- •Перетворювач коду в напругу.
- •Перетворювач коду в кут повороту.
- •Література
Цифрово-аналогові перетворювачі.
Двійкові коди в аналогові еквіваленти перетворюються різними способами, але всі вони основані на додаванні аналогових складових, пропорційних деяким двійковим приростам (елементам) вихідного двійкового числа.
За принципом отримання аналогових величин цифрово–аналогові перетворювачі (ЦАП) можна розділити на два типи: з сумуванням одиничних приростів аналогових величин і з сумуванням з урахуванням ваги розряду двійкового коду. В першому випадку вихідне число спочатку перетворюється в число–імпульсний код, тобто у відповідне число імпульсів. Потім кожному з цих імпульсів ставиться у відповідність постійний одиничний приріст аналогової величини. Всі прирости сумуються, в результаті чого на виході отримується аналогова величина – еквівалент вихідного коду. В другому випадку для кожного розряду коду, що перетворюється, підбирається еталонне значення аналогової величини, що відповідає вазі даного розряду. В процесі перетворення сумуються еталони для тих розрядів двійкового коду, в яких стоїть 1. Еталони, відповідні розрядам з нульовим значенням, в додаванні участі не беруть.
Перетворювач коду в напругу.
Приклад схеми перетворювача двійкового коду в напругу представлений на рис. 5.
Рис. 5. Схема перетворення двійкового коду в напругу.
Ця схема основана на принципі сумування струмів, пропорційних вазі розряду двійкового коду. Ключі Кл0, Кл1, …, Клn–1 цієї схеми керуються від тригерів лічильника або регістра, з якого знімається перетворюваний код. При нульових значеннях розрядів перетворюваного коду ключі відкриті, при одиничних – закриті. Резистори R і r в цій схемі еталонні, причому R >> r. Джерело живлення даної схеми стабілізоване. Струми І0, що проходять по резисторам R, створюють на резисторах r, 2r, 4r, … падіння напруги Uвих, пропорційне перетворюваному двійковому коду. Завдяки тому, що опори на резисторах r, 2r, 4r, … подвоюються в залежності від ваги розряду, що приєднує струм І0, напруга на виході буде пропорційна значенню перетворюваного коду. Наприклад, число розрядів n = 3; перетворюваний код 1012 = 510. За умовою, R >> r, тому вважаємо, що І0 однаковий в усіх розрядах: Uвих = І0(21·r + 20·r + r) + І0r = 5·І0r.
Перетворювач коду в кут повороту.
Перетворювачі коду в кут повороту часто називають цифровими слідкуючими системами. Одна з можливих схем цифрової слідкуючої системи наведена на рис. 6.
Рис. 6. Схема перетворення коду в кут повороту:
СМ – суматор; ПКН – перетворювач коду в напругу; П – підсилювач слідкуючої системи; Дв – двигун виконавчого механізму слідкуючої системи; Р – редуктор; Д – датчик; ПВК – перетворювач “вал – код”.
Схема працює так. На суматор цифрової слідкуючої системи надходять по двом каналам паралельні коди. Один код надходить від задаючого пристрою – МП–системи, а другий – від перетворювача “вал – код”. В суматорі здійснюється віднімання цих кодів. Різниця кодів надходить на перетворювач коду в напругу ПКН, а з його виходу – на вхід підсилювача П слідкуючої системи. Підсилений сигнал передається на керуючу обмотку виконавчого двигуна слідкуючої системи. Двигун повертає датчик Д на кут, пропорційний вихідному коду суматора. Двигун Дв повертається доки різниця на виході суматора не буде дорівнювати нулю. В цьому випадку кут повороту двигуна або датчика буде з певною точністю відповідати вхідному двійковому коду.