
- •50 “Електротехніка, електроніка і мікропроцесорна техніка”
- •1. Вступ до електроніки. Напівпровідники. План
- •Вступ до розділу «Електроніка».
- •Електричні властивості напівпровідників. Уявлення про основи зонної теорії твердого тіла.
- •Власна провідність.
- •Домішкова провідність.
- •2. Використання властивостей електронно-діркового переходу.
- •Напівпровідниковий діод і його застосування. Напівпровідниковий діод
- •Спрямляючі діоди
- •Схеми спрямовувачів.
- •Стабілітрони.
- •Варикап.
- •Тунельний та інші види діодів.
- •3. Транзистори.
- •Класи транзисторів.
- •Устрій та принцип дії біполярного транзистора.
- •Режими роботи біполярного транзистора.
- •Способи включення та характеристики схем включення.
- •Статичні і динамічні характеристики схем включення.
- •Хрест-характеристика транзистора
- •4. Підсилювачі.
- •Підсилювачі.
- •Характеристики підсилювачів
- •Зворотний зв'язок.
- •Електронний генератор синусоїдальних електричних коливань
- • Вступ до модуля “Мікропроцесорна техніка”.
- •Вступ до модуля “Мікропроцесорна техніка”.
- •Уявлення про інтегральні схеми
- •Уявлення про мікропроцесорні засоби
- •Типова структура мікропроцесорного пристрою
- •Загальні відомості про уявлення інформації в мп-системах
- •Додаткова інформація
- •Кодування чисел в мп-системах
- •Логічні операції
- •Логічні елементи мп-систем
- •За способом кодування двійкових змінних електронними сигналами електронні елементи можуть бути імпульсними, потенціальними, імпульсно-потенціальними, фазовими.
- •8. Схемна реалізація логічних елементів.
- • Схемна реалізація логічних функцій на прикладі функцій “не”, “і”, “або”, 3і–не”, “3або–не” та ін.
- •Типи тригерів за способом функціонування.
- •С инхронний однотактний rs–тригер.
- •Синхронний двотактний rs–тригер.
- •Регістри прийому і передачі інформації.
- •Приклади схемної реалізації зсуваючого регістру
- •Виконання порозрядних операцій «логічне додавання», «логічне множення».
- •В иконання порозрядної операції «складання за mod 2».
- •12. Лічильники.
- •Лічильник як вузол мп-системи. Призначення та класифікація
- •Лічильник з безпосередніми зв’язками з послідовним переносом.
- •Лічильник з паралельним переносом.
- •Реверсивний лічильник з послідовним переносом.
- •13. Схеми дешифраторів.
- •Дешифратори. Класифікація.
- •14. Шифратори, мультиплексори та демультиплексори.
- •Шифратори і перетворювачі кодів
- •Мультиплексори
- •Демультиплексор
- •15. Суматор.
- •Суматор як вузол мп-системи. Призначення та класифікація.
- •Однорозрядний комбінаційний суматор.
- •Однорозрядний накопичуючий суматор.
- •Багаторозрядні суматори
- •Оперативні запам’ятовуючі пристрої
- •Постійні запам’ятовуючі пристрої
- •17. Мікропроцесор.
- •Типова структура мікропроцесора.
- •Основні сигнали процесора.
- •А0а15 – виводи мп, які приєднуються до ша мп-системи;
- •D0d7 – двонапрямлені виводи мп, які приєднуються до шд мп-системи;
- •18. Мікропроцесорні системи.
- •Особливості побудови мп-систем
- •Мікропроцесорні засоби в системах керування
- •19. Перетворювачі сигналів.
- •Принцип перетворення напруги в цифровий код.
- •Аналого-цифрові перетворювачі (ацп).
- •Перетворювачі напруги в код.
- •Перетворювачі кута повороту в код.
- •Цифрово-аналогові перетворювачі.
- •Перетворювач коду в напругу.
- •Перетворювач коду в кут повороту.
- •Література
50 “Електротехніка, електроніка і мікропроцесорна техніка”
Міністерство освіти і науки, молоді та спорту України
Барський автомобільно-дорожній технікум
Національного транспортного університету
«Затверджую»
Заступник директора
з навчальної роботи
_________ Крамар Г.В.
Методичні вказівки для
самостійної роботи
з предмета
«Електротехніка, електроніка та мікропроцесорна техніка»
(частина ІІ «Електроніка»)
для студентів спеціальностей
5.07010602«Обслуговування та ремонт автомобілів і двигунів»
5.05050204«Експлуатація та ремонт підйомнотранспортних, будівельних і дорожніх машин і обладнання»
5.07010102 «Організація перевезень і управління на автотранспорті»
Розробив викладач Мельник О.В.
Розглянуто на засіданні циклової комісії
фундаментальних дисциплін
Протокол №____від______20 року
Голова комісії__________Семчук О.Л.
2014
1. Вступ до електроніки. Напівпровідники. План
Вступ до розділу «Електроніка».
Електричні властивості напівпровідників.
Уявлення про основи зонної теорії твердого тіла.
Власна провідність.
Домішкова провідність.
P-n перехід та його властивості.
Вступ до розділу «Електроніка».
Електроніка як наука займається вивченням електронних явищ і процесів, пов’язаних зі зміною концентрації і переміщенням заряджених часток в різних середовищах (у вакуумі, газах, рідинах, твердих тілах) і умовах (при різній температурі, під впливом електричних і магнітних полів).
Задачею електроніки як галузі техніки (технічної електроніки) є розробка, виробництво і експлуатація електронних приладів і пристроїв самого різного призначення.
Можна назвати декілька основних напрямів, що характеризують сфери прикладення технічної електроніки. Кожний з цих напрямів, в свою чергу, має численні розгалуження. Це зв’язок, радіоелектронна апаратура широкого споживання, промислова електроніка (управління виробничими процесами, вимірювальна апаратура, пристрої електроживлення, промислове телебачення, автоматика, телеуправління, медична апаратура (діагностична, лікувальна, протезування і ін.), електротехнічне і енергетичне обладнання), спеціальна техніка (апаратура, що застосовується на транспорті, радіолокація і радіонавігація, інфрачервона техніка, обладнання космічних апаратів, оптичні квантові генератори, ультразвукова локація, ядерна електроніка, біологічна електроніка і т.д.), обчислювальна техніка і технічна кібернетики (електронні цифрові та аналогові обчислювальні машини, персональні мікрокомп'ютери, автоматизовані системи управління, автоматичні інформаційні системи, електронні навчальні і контролюючі машини і т.д.).
Ефективність електронної апаратури зумовлена високою швидкодією, точністю і чутливістю її елементів, найважливішими з яких є електронні прилади. За допомогою цих приладів можна порівняно просто і в багатьох випадках з високим к.к.д. перетворювати електричну енергію за формою, величиною і частотою струму або напруги. Такий процес перетворення енергії здійснюється в багатьох схемах електронної апаратури (спрямовувачах, підсилювачах, генераторах).
За допомогою електронних приладів вдається перетворювати неелектричну енергію в електричну і навпаки (наприклад, в фотоелементах, терморезисторах). Різноманітні електронні датчики і вимірювальні прилади дозволяють з високою точністю вимірювати, реєструвати і регулювати зміни всіляких неелектричних величин – температури, тиску, пружних деформацій, прозорості і т.д.
Процеси перетворення енергії в приладах електроніки відбуваються з великою швидкістю. Це зумовлене малою інерційністю, характерною для більшості електронних приладів, що дозволяє застосовувати їх в широкому діапазоні частот – від нуля до десятків і сотень гігагерц. При цьому досягається така висока чутливість, яка не може бути отримана в приладах іншого типу.
Сучасний етап розвитку електронної техніки характеризується значним ускладненням електронної апаратури. Звичайні (дискретні) компоненти електронних схем вже не можуть в повній мірі задовольнити вимоги щодо різкого зменшення габаритних розмірів і підвищення надійності електронних пристроїв.
Все більш широкий розвиток отримує мікроелектроніка – галузь електроніки, що займається мікромініатюризацією електронної апаратури з метою зменшення її об'єму, маси, вартості, підвищення надійності і економічності на основі комплексу конструктивних, технологічних і схемних методів.
Основною елементною базою сучасних електронних пристроїв є напівпровідникові прилади. Клас напівпровідникових приладів складають діоди, біполярні і польові транзистори, тиристори і інші прилади, принцип дії яких заснований на електрофізичних процесах в напівпровідниках.
До напівпровідників відносяться чисельні матеріали, які за багатьма ознаками займають проміжне становище між провідниковими і діелектричними. Найбільше застосування в напівпровідниковій техніці отримали кремній, германій, галій, селен і такі хімічні сполуки, як арсенід галію, карбід кремнію, сульфід кадмію і т. д. Напівпровідники відрізняються від інших твердих кристалічних матеріалів електропровідністю, енергетичним станом кристалів, характерною залежністю електричних властивостей від температури, випромінювань і інших зовнішніх впливів. Контролюючи електронні процеси – концентрацію, швидкість і напрям руху заряджених часток – за допомогою електричних і магнітних полів, можна, керувати електричним струмом в напівпровідникових приладах.
Вивчення властивостей цих часток і їх поведінки в різних умовах є необхідною передумовою для розуміння роботи різноманітних електронних елементів.
Теорія фізичних явищ в напівпровідниках відзначається складністю і може бути опанована на основі глибокого вивчення фундаментальних розділів твердого тіла з застосуванням відповідного апарату. Тому обмежимось спрощеним викладенням основних теоретичних положень фізики напівпровідників, виокремлюючи лише ті з них, які необхідні для наступного вивчення і розуміння роботи напівпровідникових приладів.