Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
I МАТАН Экзамен ответы на вопросы.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
2.57 Mб
Скачать

Необходимое условие экстремума дифференцируемой функции. Достаточные условия существования экстремума (по первой производной)

Теорема Ферма: Если x0 - точка экстремума непрерывной функции f(x), то f'(x0)=0. Геометрически это выглядит так: в точке экстремума касательная параллельна оси ОХ и, поэтому угол наклона равен 0. Это условие является необходимым, но не достаточным условием экстремума.Достаточное условие экстремума: Если при переходе через стационарную точку производная меняет знак, то эта точка является экстремумом. Если меняет знак с «+» на «-», то это точка максимума. Если меняет знак с «-» на «+», то это точка минимума. Если при переходе через стационарную точку производная не меняет знак, то эта точка не является экстремумом.

Достаточные условия существования экстремума функции через производные высших порядков Достаточное условие экстремума

1) Первое достаточное условие

Если:

а) f(x) непрерывная функция и определена в некоторой окрестности точки  такой, что первая  производная в данной точке равна нулю или не существует.

б) f(x) имеет конечную производную в окрестности задания и непрерывности функции

в) производная сохраняет определенный знак справа от точки  и слева от этой же точки, тогда точку  можно охарактеризовать следующим образом

     Это условие не очень удобное, так как нужно проверять множество условий и запоминать таблицу, однако если ничего не сказано о производных высших порядках, то это единственный способ найти экстремум функции.

2) Второе достаточное условие

     Если функция g(x) обладает второй производной  причем в некоторой точке первая производная равна нулю, а вторая производная отлично от нуля. Тогда точка экстремум функции g(x), причем если  , то точка является максимумом; если  , то точка является минимумом.

3) Третье достаточное условие

     Пусть функция g(x) имеет в некоторой окрестности точки   N производных, причем значение первых (N - 1)- ой и самой функции в этой точке равно нулю, а значение N-ой производной отлично от нуля. В таком случае:

а) Если N - четно, то точка   экстремум функции:  у функции точка максимума,    у функции точка минимума.

б) Если N - нечетно, то в точке  у функции g(x) экстремума нет.

Выпуклость и вогнутость. Определения. Необходимое и достаточные условия выпуклости и вогнутости функции

График функции y=f(x) называется выпуклым на интервале (a; b), если он расположен ниже любой своей касательной на этом интервале. График функции y=f(x) называется вогнутым на интервале (a; b), если он расположен выше любой своей касательной на этом интервале. Пусть y=f(x) дифференцируема на (a; b). Если во всех точках интервала (a; b) вторая производная функции y = f(x) отрицательная, т.е. f ''(x) < 0, то график функции на этом интервале выпуклый, если же f''(x) > 0 – вогнутый.

Доказательство. Предположим для определенности, что f''(x) < 0 и докажем, что график функции будет выпуклым. Возьмем на графике функции y = f(x) произвольную точку M0 с абсциссой x0 Î (a; b) и проведем через точку M0 касательную. Ее уравнение . Мы должны показать, что график функции на (a; b) лежит ниже этой касательной, т.е. при одном и том же значении x ордината кривой y = f(x) будет меньше ордината касательной.

Точки перегиба графика функции. Определение. Необходимое условие существования точек перегиба кривой y=f(x)

Асимптоты плоских кривых. Определение. Виды асимптот. Необходимые и достаточные условия существования асимптот: вертикальных. Горизонтальных, наклонных

Первообразная функции. Необходимое и достаточное условия существования первообразной. Теорема о первообразных одной и той же функции

Неопределенный интеграл. Определение. Основные свойства.

Метод интегрирования по частям

Метод интегрирования по частям позволяет свести исходный неопределенный интеграл к более простому виду либо к табличному интегралу. Этот метод наиболее часто применяется, если подынтегральная функция содержит логарифмические, показательные, обратные тригонометрические, тригонометрические функции, а также их комбинации.

Формула интегрирования по частям следующая  .

То есть, подынтегральное выражение f(x)dx представляем в виде произведения функции u(x)на d(v(x)) - дифференциал функции v(x). Далее находим функцию v(x) (чаще всего методом непосредственного интегрирования) и d(u(x)) - дифференциал функции u(x). Подставляем найденные выражения в формулу интегрирования по частям и исходный неопределенный интеграл сводится к разности  . Последний неопределенный интеграл может быть взят с использованием любого метода интегрирования, в том числе и метода интегрирования по частям.

В качестве примера найдем множество первообразных функции логарифма.