Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Раздел № 4 Синхронные машины.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
3.02 Mб
Скачать

Угловая характеристика синхронного генератора

Электромагнитная мощность неявнополюсного синхронного генератора при его параллельной работе с сетью

, (21.7)

где – угол, на который продольная ось ротора смещена относи­тельно продольной оси результирующего поля машины (рис. 21.4).

Электромагнитная мощность явнополюсного синхрон­ного генератора

, (21.8)

где – синхронные индуктивные со­противления явнополюсной синхронной машины по продольной и поперечной осям соответственно, Ом.

Разделив выражения (21.7) и (21.8) на синхронную частоту вращения , получим выражения электромагнитных моментов:

неявнополюсной синхронной машины

; (21.9)

явнополюсной синхронной машины

, (21.10)

где – электромагнитный момент, Н·м.

Анализ выражения (21.10) показывает, что электромагнитный момент явнополюсной машины имеет две составляющие: одна из них представляет собой основную составляющую электромаг­нитного момента

, (21.11)

другая – реактивную составляющую момента

. (21.12)

Основная составляющая электромагнитного момента яв­нополюсной синхронной машины зависит не только от напряже­ния сети , но и от ЭДС , наведенной магнитным по­током вращающегося ротора Ф в обмотке статора:

. (21.13)

Это свидетельствует о том, что основная составляющая электро­магнитного момента зависит от магнитного потока ротора: . Отсюда следует, что в машине с невозбужденным рото­ром основная составляющая момента .

Реактивная составляющая электромагнитного момента не зависит от магнитного потока полюсов ротора. Для возникновения этой составляющей достаточно двух условий: во-первых, чтобы ротор машины имел явновыраженные полюсы и, во-вторых, чтобы к обмотке статора было подведено напряжение сети . Подробнее физическая сущность реактивного момента.

При увеличении нагрузки синхронного генератора, т. е. с ростом тока происходит увеличение угла , что ведет к изменению элек­тромагнитной мощности генератора и его электромагнитного момен­та. Зависи­мость результирующего электромагнитного момента или электромаг­нитной мощности от угла представленная графиком 3, называется угловой характеристикой синхронной машины.

Максимальное значение электромагнитного момента со­ответствует критическому значению угла .

Как видно из результирующей угловой характеристики (гра­фик 3), при увеличении нагрузки синхронной машины до значе­ний, соответствующих углу , синхрон­ная машина работает устойчиво. Объясняется это тем, что при рост нагрузки генерато­ра (увеличение ) со­провождается увеличе­нием электромагнитно­го момента. В этом слу­чае любой установив­шейся нагрузке соответ­ствует равенство враща­ющего момента первичного двигателя сумме противодействую­щих моментов, т. е. . В результате частота вращения ротора остается неизменной, равной синхронной частоте вращения.

Рис. 96. Угловая характеристика син­хронного генератора

При нагрузке, соответствующей углу , электромагнит­ный момент уменьшается, что ведет к нарушению равенства вращающего и противодействующих моментов. При этом избы­точная (неуравновешенная) часть вращающего момента первично­го двигателя вызывает увеличение частоты вращения ротора, что ведет к нарушению условий синхронизации (машина выходит из синхронизма).

Электромагнитный момент, соответствующий критическому значению угла , является максимальным .

Для явнополюсных синхронных машин эл. град.

Угол можно определить из формулы

. (21.14)

Здесь

. (21.15)

У неявнополюсных синхронных машин , а по­этому угловая характеристика представляет собой синусоиду и угол .

Отношение максимального электромагнитного момента к но­минальному , называется перегрузочной способностью синхронной машины или коэффициентом статической перегружаемости:

. (21.16)

Пренебрегая реактивной составляющей момента, можно записать

, (21.17)

т. е. чем меньше угол , соответствующий номинальной на­грузке синхронной машины, тем больше ее перегрузочная способ­ность. Например, у турбогенератора , что соответст­вует .

U – образные характеристики синхронного генератора

Рассмотрим работу синхронного генератора, если после подключения его к сети для параллельной работы изменить ток в его обмотке возбуждения, оставив неизменным вращающий момент приводного двигателя? Предположим, что генератор после подключения на сеть работает без нагрузки и его ЭДС уравновешивает напряжение сети . Если при этом увеличить ток в обмотке возбуждения, т. е. пере­возбудить машину, то ЭДС увеличится до значения в цепи генератора появится избыточная ЭДС (рис. 97, а), вектор которой совпадает по направлению с вектором ЭДС . Ток , вызванный ЭДС , будет отставать от нее по фазе на 90° (поскольку ). По отношению к ЭДС этот ток также будет отстающим (индуктивным). С увеличением перевоз­буждения значение реактивного (индуктивного) тока увеличится.

Если же после того, как генератор подключен к сети, умень­шить ток возбуждения, т. е. недовозбудить машину, то ЭДС уменьшится до значения и в цепи генератора опять будет действовать избыточная ЭДС . Теперь вектор этой ЭДС будет совпадать по направлению с вектором напряжения сети (рис. 97, б), и поэтому ток , вызванный этой ЭДС и отстающий от нее по фазе на 90°, будет опере­жающим (емкостным) по отношению к ЭДС генератора .

Рис. 97. Векторные диаграммы ЭДС синхрон­ного генератора,

вклю­ченного на параллельную работу

Показанное на векторных диа­граммах можно объяснить следующим. При перевозбуждении генера­тора увеличивается МДС возбуждения . Это сопровож­дается появлением в обмотке статора реактивного тока , который по отношению к ЭДС является отстающим (индуктивным). Вы­званная этим током продольно-размагничивающая реакция якоря компенсирует избыточную МДС возбуждения так, что ЭДС генератора остается неизменной. Такой же процесс происходит и при недовозбуждении генератора с той лишь разницей, что в обмотке появляется опережающий (емкостный) ток , а вызванная этим током продольно-намагничивающая реакция якоря компен­сирует недостающую МДС возбуждения.

Следует иметь в виду, что ток , отстающий по фазе от ЭДС , по отношению к напряжению сети является опережающим током и, наоборот, ток , опережаю­щий по фазе ЭДС , является отстающим по отношению к на­пряжению .

Рис 98. U – образные характери­стики синхронного генератора

Если при всех изменениях тока возбуждения вращающий момент приводного двигателя остается неизменным, то также неизменной остается активная мощность генератора:

.

Из этого выражения следует, что при активная со­ставляющая тока статора .

Таким образом, степень возбуждения синхронного генератора влияет только на реактивную составляющую тока статора. Что же касается активной составляющей тока , то она остается неизменной.

Зависимость тока статора от тока в обмотке возбуждения при неизменной активной нагрузке генератора выражается графически U – образной кривой. На рис. 98 представлены U – образные характеристики при , построенные для разных значений активной нагрузки: ; и . U – образные характеристики синхронного генератора показы­вают, что любой нагрузке генератора соответствует такое зна­чение тока возбуждения , при котором ток статора , стано­вится минимальным и равным только активной составляющей: . В этом случае генератор работает при коэф­фициенте мощности . Значения тока возбуждения, соот­ветствующие при различной нагрузке генератора, пока­заны на рис. 98 пунктирной кривой. Некоторое отклонение этой кривой вправо указывает на то, что при увеличении нагрузки ток возбуждения, соответствующий , несколько возрастает. Объясняется это тем, что при росте нагрузки необходимо некоторое увеличение тока возбуждения, компенсирующее активное па­дение напряжения.

Необходимо иметь в виду, что при постепенном уменьшении тока возбуждения наступает такое минимальное его значение, при котором магнитный поток обмотки возбуждения оказывается на­столько ослабленным, что синхронный генератор выпадает из синхронизма – нарушается магнитная связь между возбужден­ными полюсами ротора и вращающимся полем статора. Если со­единить все точки минимально допустимых значений тока возбу­ждения на U – образных характеристиках (штриховая линия в левой части рис. 98), то получим линию предела устойчивости рабо­ты синхронного генератора при недовозбуждении.

С точки зрения уменьшения потерь генератора наиболее вы­годным является возбуждение, соответствующее минимальному току статора, т. е. когда . Но в большинстве случаев на­грузка генератора имеет индуктивный характер и для компенсации индуктивных токов (отстающих по фазе от напряжения сети) при­ходится несколько перевозбуждать генератор, создавая условия, при которых ток статора , опережает по фазе напряжение сети . Следует отметить, что для сохранения , неизменным при изменениях активной нагрузки генератора требуется одновремен­ное изменение тока возбуждения генератора.