Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Раздел № 4 Синхронные машины.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
3.02 Mб
Скачать

Лекция № 14

Устройство и типы синхронных машин

Возбуждение синхронных машин

Типы синхронных машин и их устройство

Синхронная машина состоит из неподвижной части – ста­тора – и вращающейся части – ротора. Статоры синхронных машин в принципе не отличаются от статоров асинхронных двига­телей, т. е. состоят из корпуса, сердечника и обмотки.

Конструктивное исполнение статора синхронной машины мо­жет быть различным в зависимости от назначения и габаритов машины. Так, в многополюсных машинах большой мощности при наружном диаметре сердечника статора более 900 мм пластины сердечника делают из отдельных сегментов, которые при сборке образуют цилиндр сердечника статора. Корпуса статоров крупно­габаритных машин делают разъемными, что необходимо для удобства транспортировки и монтажа этих машин.

Роторы синхронных машин могут иметь две принципиально различающиеся конструкции: явнополюсную и неявнополюсную.

В энергетических установках по производству электроэнергии переменного тока в качестве первичных (приводных) двигателей синхронных генераторов применяют в основном три вида двигате­лей: паровые турбины, гидравлические турбины либо двигатели внутреннего сгорания (дизели). Применение любого из перечис­ленных двигателей принципиально влияет на конструкцию син­хронного генератора.

Рис. 76. Конструкция роторов синхронных машин:

a – ротор с явно выраженными полюсами; б – ротор с неявно выраженными полюсами

Рис. 77. Гидрогенератор Братской ГЭС (225 МВт, 15,8 кВ, 125 об/мин):

1 – корпус статора; 2 – сердечник статора; 3 – полюс ротора;

4 – обод ротора; 5 – грузонесущая крестовина

Если приводным двигателем является гидравлическая турби­на, то синхронный генератор называют гидрогенератором. Гидравлическая турбина обычно развивает небольшую частоту вращения (60-500 об/мин), поэтому для получения переменного тока промышленной частоты (50 Гц) в гидрогенераторе применя­ют ротор с большим числом полюсов. Роторы гидрогенераторов имеют явнополюсную конструкцию, т. е. с явно выраженными по­люсами, при которой каждый полюс выполняют в виде отдельного узла, состоящего из сердечника 1, полюсного наконечника 2 и по­люсной катушки 3 (рис. 76, а). Все полюсы ротора закреплены на ободе 4, являющемся также и ярмом магнитной системы машины, в котором замыкаются потоки полюсов. Гидрогенераторы обычно изготовляются с вертикальным расположением вала (рис. 77).

Рис 78. Турбогенератор:

1 – возбудитель, 2 – корпус, 3 – сердечник статора,

4 – секции водородного охлаждения, 5 – ротор

Паровая турбина работает при большой частоте вращения, поэтому приводимый ею во вращение генератор, называемый турбогенератором, является быстроходной синхронной машиной. Роторы этих генераторов выполняют либо двухпо­люсными (n1 = 3000 об/мин), либо четырехполюсными (n1 = 1500 об/мин).

Рис 79. Синхронный генератор (дизель-генератор):

1 – контактные кольца, 2 – щеткодержатели, 3 – полюсная катушка ротора,

4 – полюсный наконечник, 5 – сердечник статора, 6 – вентилятор, 7 – вал

В процессе работы турбогенератора на его ротор действуют значительные центробежные силы. Поэтому по условиям механи­ческой прочности в турбогенераторах применяют неявнополюсный ротор, имеющий вид удлиненного стального цилиндра с профрезерованными на поверхности продольными пазами для об­мотки возбуждения (см. рис. 76, б). Сердечник неявнополюсного ротора изготовляют в виде цельной стальной поковки вместе с хвостовиками (концами вала) или же делают сборным. Обмотка возбуждения неявнополюсного ротора занимает лишь 2/з его по­верхности (по периметру). Оставшаяся 1/з поверхности образует полюсы. Для защиты лобовых частей обмотки ротора от разруше­ния действием центробежных сил ротор с двух сторон прикрыва­ют стальными бандажными кольцами (каппами), изготовляемыми обычно из немагнитной стали.

Рис. 80. Устройство синхронного двигателя серии СДН2

Турбогенераторы (рис. 78) и дизель-генераторы изготовляют с горизонтальным расположением вала. Дизель-генераторы рас­считывают на частоту вращения 600-1500 об/мин и выполняют с явнополюсным ротором (рис. 79).

Большую группу синхронных машин составляют синхронные двигатели, которые обычно изготовляются мощностью до не­скольких тысяч киловатт и предназначены для привода мощных вентиляторов, мельниц, насосов и других устройств, не требую­щих регулирования частоты вращения. Рассмотрим устройство синхронного двигателя серии СДН2 (рис. 80). Двигатели этой серии изготовляются мощностью от 315 до 4000 кВт при частотах вращения от 300 до 1000 об/мин и предназначены для включения в сеть частотой 50 Гц при напряжении 6 кВ.

Сердечник статора 4, запрессованный в стальной корпус, со­стоит из пакетов-сегментов, собранных из штампованных листов электротехнической стали толщиной 0,5 мм. Для лучшего охлаждения двигателя пакеты разделены радиальными вентиляционны­ми каналами шириной по 10 мм. Обмотка статора 12 двухслойная с укороченным шагом. Сердечники полюсов 11 ротора крепятся к остову 3 шпильками 5. Обмотка ротора состоит из по­люсных катушек. Контактные кольца 8 крепятся на конце вала. На роторе имеются лопатки б центробежного вентилятора. Стояковые подшипники скольжения 2 и 7 установлены на подшипниковых полущитах 1 и 9. Двигатель с торцовых сторон прикрыт сталь­ными щитами 13. В обшивке 10 корпуса имеются вентиляцион­ные окна, прикрытые жалюзи. На боковой поверхности корпуса расположена коробка выводов 14. Возбуждение двигателей осуществляется от тиристорных преобразователей с автоматиче­ским регулированием тока возбуждения при пуске и остановке двигателей.

Рис 81. Полюс синхронного двигателя

На рис. 81 показано более подробно устройство элемента синхронного двигателя, характерное для большинства конструк­ций. На вал 1 посажен шихтованный обод 2, на котором посредст­вом Т-образного хвостовика крепится сердечник полюса 3, выполненный заодно с полюсным наконечником. Сердечники полюсов изготовлены из штампованных листов конструкционной стали толщиной 1,0 или 1,5 мм. Хвостовик полюса запирается в про­дольном пазе обода посредством клиньев 9. Возможно также крепление полюсов к ободу посредством «ласточкина хвоста» (см. рис. 76) или шпилек. Стальные щеки 4, стягиваемые шпильками, предотвращают распушение пакета полюса ротора. Щеки имеют заплечики, удерживающие полюсную катушку ротора 5.

В пазах полюсных наконечников расположены латунные или медные стержни 6 пусковой (успокоительной) обмотки, замкнутые с двух сторон сегментами 7.

Между наружной поверхностью полюсного наконечника и внутренней поверхностью сердечника статора 8 имеется воздуш­ный зазор. По оси полюса этот зазор δ минимален, а на краях – максимален δmax. Такая конфигурация полюсного наконечника не­обходима для синусоидального распределения магнитной индук­ции в воздушном зазоре. Она достигается тем, что поверхность полюсного наконечника имеет радиус R < (D1 – 2δ)/2, где D1 – диаметр расточки сердечника статора.

Возбуждение синхронных машин

На роторе синхронного генератора расположен источник МДС (индуктор), создающий в генераторе магнитное поле. С помощью приводного двигателя (ПД) ротор генератора приводится во вращение с синхронной частотой n1. При этом магнитное поле ротора также вращается и, сцепляясь с обмоткой статора, наводит в ней ЭДС.

Основным способом возбуждения синхронных машин является электромагнитное возбуждение, сущность которого состоит в том, что на полюсах ротора располагают обмотку возбуждения. При про­хождении по этой обмотке постоянного тока возни­кает МДС возбуждения, которая наводит в магнит­ной системе машины магнитное поле.

До недавнего времени для питания обмотки возбуждения применялись специальные генераторы постоянного тока независимого возбуждения, называемые возбудителями В (рис. 82, а), обмотка возбуждения которого (ОВ) получала пита­ние постоянного тока от другого генератора (парал­лельного возбуждения), называемого подвозбудителем (ПВ). Ротор синхронной машины и якоря возбудителя и подвозбудителя располагаются на общем валу и вращаются одновременно. При этом ток в обмотку возбуждения синхронной машины поступает через контактные кольца и щетки. Для регулирования тока возбуждения применяют регу­лировочные реостаты, включаемые в цепи возбуж­дения возбудителя (r1) и подвозбудителя (r2).

В синхронных генераторах средней и большой мощности про­цесс регулирования тока возбуждения автоматизируют.

В синхронных генераторах большой мощности - турбогене­раторах - иногда в качестве возбудителя применяют генераторы переменного тока индукторного типа. На выходе такого генератора включают полупроводниковый выпрямитель. Регулировка тока возбуждения синхронного генератора в этом случае осуществляется изменением возбуждения индуктор­ного генератора.

Получила применение в синхронных генераторах бескон­тактная система электромагнитного возбуждения, при которой синхронный генератор не имеет контактных колец на роторе.

В качестве возбудителя и в этом случае применяют генератор переменного тока (рис. 82, б), у которого обмотка 2, в которой наводится ЭДС (обмотка якоря), расположена на роторе, а обмот­ка возбуждения 1 расположена на статоре. В результате обмотка якоря возбудителя и обмотка возбуждения синхронной машины оказываются вращающимися, и их электрическое соединение осу­ществляется непосредственно, без контактных колец и щеток. Но так как возбудитель является генератором переменного тока, а об­мотку возбуждения необходимо питать постоянным током, то на выходе обмотки якоря возбудителя включают полупроводниковый преобразователь 3, закрепленный на валу синхронной машины и вращающийся вместе с обмоткой возбуждения синхронной маши­ны и обмоткой якоря возбудителя. Питание постоянным током обмотки возбуждения 1 возбудителя осуществляется от подвозбудителя (ПВ) – генератора постоянного тока.

Рис. 82. Контактная (а) и бесконтактная (б) системы электромагнитно­го

возбуждения синхронных генераторов

Отсутствие скользящих контактов в цепи возбуждения син­хронной машины позволяет повысить ее эксплуатационную на­дежность и увеличить КПД.

В синхронных генераторах, в том числе гидрогенераторах, получил распространение принцип самовозбуждения (рис. 83, а), когда энергия переменного тока, необходимая для возбуждения, отбирается от обмотки статора синхронного генератора и через понижающий трансформатор и выпрямительный полупро­водниковый преобразователь (ПП) преобразуется в энергию по­стоянного тока. Принцип самовозбуждения основан на том, что первоначальное возбуждение генератора происходит за счет остаточного магнетизма магнитопровода машины.

Рис. 83. Принцип самовозбуждения синхронных генера­торов

На рис. 19.2, б представлена структурная схема автоматиче­ской системы самовозбуждения синхронного генератора (СГ) с выпрямительным трансформатором (ВТ) и тиристорным преобразователем (ТП), через которые электроэнергия переменного тока из цепи статора СГ после преобразования в постоянный ток пода­ется в обмотку возбуждения. Управление тиристорным преобразо­вателем осуществляется посредством автоматического регулятора возбуждения АРВ, на вход которого поступают сигналы напряже­ния на выходе СГ (через трансформатор напряжения ТН) и тока нагрузки СГ (от трансформатора тока ТТ). Схема содержит блок защиты БЗ, обеспечивающий защиту обмотки возбуждения и тиристорного преобразователя ТП от перенапряжений и токовой пе­регрузки.

В современных синхронных двигателях для возбуждения применяют тиристорные возбудительные устройства, включае­мые в сеть переменного тока и осуществляющие автоматическое управление током возбуждения во всевозможных режимах работы двигателя, в том числе и переходных. Такой способ возбуждения является наиболее надежным и экономичным, так как КПД тиристорных возбудительных устройств выше, чем у генераторов постоянного тока. Промышленностью выпускаются тиристорные возбудительные устройства на различные напряжения возбужде­ния с допустимым значением постоянного тока 320 А.

Наибольшее распространение в современных сериях синхрон­ных двигателей получили возбудительные тиристорные устройст­ва типов ТЕ8-320/48 (напряжение возбуждения 48 В) и ТЕ8-320/75 (напряжение возбуждения 75 В).

Мощность, затрачиваемая на возбуждение, обычно составляет от 0,2 до 5% полезной мощности машины (меньшее значение от­носится к машинам большой мощности).

В синхронных машинах малой мощности находит применение принцип возбуждения постоянными магнитами, когда на роторе машины располагаются постоянные магниты. Такой способ воз­буждения дает возможность избавить машину от обмотки возбуж­дения. В результате конструкция машины упрощается, становится более экономичной и надежной. Однако из-за дефицитности мате­риалов для изготовления постоянных магнитов с большим запасом магнитной энергии и сложности их обработки применение возбу­ждения постоянными магнитами ограничивается лишь машинами мощностью не более нескольких киловатт.