Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции - Теоретические основы легирования.doc
Скачиваний:
4
Добавлен:
01.05.2025
Размер:
4.51 Mб
Скачать

Закономерности образования твердых растворов внедрения

Твердые растворы внедрения образуют элементы внедрения с малыми атомными размерами. Значения атомных радиусов rх элементов внедрения приведены ниже:

Элемент внедрения В С N О Н

rx, нм 0,091 0,077 0,071 0,063 0,046

Твердые растворы внедрения всегда ограничены, а растворимость в них зависит от кристаллической структуры металла-растворителя и размеров атома элемента внедрения. Ограниченность твердых растворов внедрения определяется тем, что они сохраняют решетку металла-растворителя, а атомы внедрения в них занимают лишь вакантные междоузлия - октаэдрические и тетраэдрические поры в решетке металла-растворителя. Часть пор всегда не заполнена. Cхема расположения пор в α-и γ-железе приведена на рисунке 6.

Наиболее благоприятными позициями расположения атомов внедрения в твердом растворе будут октаэдрические поры в α-железе и окта- и тетраэдрические поры в γ-железе. Междоузлие обязательно должно быть меньше, чем размер атома внедрения, так как в противном случае прочной связи между атомами металла-растворителя и атомами внедрения не будет. Однако размер поры не должен быть и слишком малым, так как внедрение атома вызовет ослабление связей между атомами решетки растворителя, и структура такого твердого раствора будет неустойчивой. Какая из пор является наиболее благоприятной для размещения в ней атома внедрения, будет определяться не только ее размерами, но и количеством соседних атомов, претерпевших деформацию при образовании твердого раствора внедрения. Так, в α-железе растворение углерода и азота происходит в октаэдри-ческих порах, меньших по размеру, чем тетраэдрические, так как в первом случае смещаются два атома вдоль ребра куба в направлении с малой плотностью упаковки, а во втором - четыре атома в направлении плотной упаковки. Таким образом, энергия деформации о.ц.к. решетки от внедрения атомов углерода или азота в окта-пору будет меньше, чем при внедрении их в тетра-пору.

Растворимость атомов внедрения увеличивается с уменьшением размера атомов, т.е. возрастает в ряду B-C-N-O-H. Из перечисленных атомов внедрения наибольшее значение при рассмотрении легированных сталей имеют углерод и азот. Данные по их растворимости в α-железе приведены на рис. 7. Как видно, азот, имеющий меньший атомный радиус (0,071 нм), чем углерод (0,077 нм), растворяется в α-железе в значительно большем количестве. В γ-железе максимальная растворимость азота также больше, чем углерода (2,8 и 2,0 % соответственно). Значительно большая растворимость углерода и азота в γ-железе по сравнению с α-железом связана с тем, что в г.ц.к. решетке размер пор больше, а их число меньше, чем в о.ц.к. решетке, т.е. для α-железа характерна большая рыхлость упаковки.

Необходимо также отметить, что значительная деформация решетки при внедрении атомов неметалла в пору решетки металла-растворителя приводит к тому, что значительное число пор не заполняется атомами внедрения. Так, при предельном насыщении углеродом γ-железа (до 2 % С) один атом углерода приходится на каждые три элементарных ячейки γ-железа [-8 % (ат.) С], а для α-железа (0,018 % С) один атом углерода на 600 элементарных ячеек [0,083 % (ат.) С]. Столь значительное различие растворимости углерода в двух модификациях железа обусловливает возможность различной термической обработки сталей.

Рис.6 – Положение октаэдрических (б, г) и тетраэдрических пор в г.ц.к. (а, б) и о.ц.к. (а, г) решетках.

Рис.7 – Температурная зависимость растворимости углерода (сплошные линии) и азота (штриховые линии) в α-железа.

Твердые растворы внедрения образуются при выполнении условия (правила Хэгга)

rx / rMe < 0,59

где rх - радиус атома внедрения (неметалла); rMe - радиус атома-растворителя (металла).

На основании роли размерного фактора для твердых растворов внедрения (rx / rMe, <0,59) и замещения (rx / rMe = 0,85-1,15) следует сказать, что отношение атомных размеров в пределах 0,59-0,85 является неблагоприятным для образования твердых растворов. В этом случае, как будет показано ниже, получаются химические соединения со сложной структурой.