Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции - Теоретические основы легирования.doc
Скачиваний:
4
Добавлен:
01.05.2025
Размер:
4.51 Mб
Скачать

3.3.2 Образование специальных карбидов и их коагуляция

При отпуске мартенсита так же, как и при перлитном превращении, возможны два механизма образования специальных карбидов: через промежуточный карбид-легиро-ванный цементит (механизм “на месте”); путем непосредственного зарождения в твердом растворе.

Механизм зарождения специального карбида из легированного цементита состоит в перестройке его решетки в решетку специального карбида после насыщения цементита легирующим элементом до предела растворимости в нем. Этот механизм предусматривает достаточно высокую растворимость легирующего элемента в цементите, необходимую для образования соответствующего специального карбида. Из всех карбидообразующих элементов только хром имеет высокую растворимость в цементите (до 20%). Молибден и вольфрам растворяются в нем в пределах десятых долей процента, а элементы IV и V групп (V, Nb, Тi, Zr и др.) практически не растворяются в цементите.

Имеющиеся литературные данные показывают, что по механизму “на месте” при отпуске закаленной стали может образовываться карбид хрома типа (Fе,Сr)7С3. В высокохромистых сталях при отпуске по механизму “на месте” возможен также переход (Fе,Сr)7С3 ® (Fе,Сr)23С6.

С повышением температуры отпуска зародившиеся карбиды начинают коагулировать. Для каждой карбидной фазы существует свой температурно-временной интервал коагуляции. Склонность карбидных фаз к коагуляции уменьшается по мере удаления их от цементита в ряду стойкости карбидов. Так, если в углеродистой стали коагуляция цементита начинается при температурах отпуска 350-400°С, то в сталях, легированных карбидообразующими элементами, коагуляция начинается при отпуске 450-600°С.

3.3.3 Распад остаточного аустенита

Распад остаточного аустенита после закалки наряду с мартенситом в стали практически всегда имеется то или иное количество остаточного аустенита. В закаленных конструкционных сталях количество аустенита бывает до 3-5 %, в быстрорежущих сталях оно составляет 20-40%, а в высокохромистых полутеплостойких инструментальных сталях количество остаточного аустенита после закалки может доходить до 60-80%.

При распаде остаточного аустенита на бейнит легирующие элементы (Mn, Cr, Ni, W, Si) повышают температуру отпуска, при которой протекает это превращение. Если в углеродистой стали остаточный аустенит распадается на бейнит при температурах отпуска 200-300°С, то в легированных сталях в зависимости от состава и содержания легирующих элементов для этих целей необходим отпуск при температурах 400-600°С. Кинетика распада остаточного аустенита существенного отличается от кинетики изотермического распада аустенита. Это обусловлено тем, что остаточный аустенит расположен в виде тонких прослоек между кристаллами мартенсита и, следовательно, находится в напряженном состоянии, превращение его в бейнит происходит практически без инкубационного периода. Возникающий бейнит по свойствами структуре близок к продуктам распада мартенсита при данной температуре.

Превращение остаточного аустенита в мартенсит при охлаждении после отпуска может протекать в высоколегированных сталях, для которых характерна диаграмма изотермического распада аустенита с линией выделения избыточных специальных карбидов (рис. 28, штриховая линия). В этом случае в процессе выдержки при температуре отпуска (обычно 500-600 °С) из остаточного аустенита выделяются специальные карбиды типа Ме23С6 и др., остаточный аустенит обедняется углеродом и легирующим элементом, его мартенситная точка становится выше комнатной температуры и при охлаждении в участках остаточного аустенита образуется мартенсит. Иногда (например, в случае быстрорежущей стали) для полного превращения остаточного аустенита в мартенсит требуется 2-4-х кратный отпуск. После такого отпуска твердость стали может быть даже более высокой, чем она была после закалки вследствие появления неотпущенного мартенсита. Поэтому такое явление иногда называют вторичной закалкой или вторичной твердостью.

3.3.4 Возврат и рекристаллизация ферритной матрицы

При отпуске закаленной стали проходят процессы возврата и рекристаллизации, аналогичные протекающим при нагреве холоднодеформированной стали. Различие обусловлено разницей исходной структуры. Плотность дислокации закаленной стали как и холоднодеформированной, высокая (108-1010, мм-2), однако в мартенсите отсутствует ячеистая структура, а дислокации распределены относительно равномерно; для такой структуры характерно множество границ между мартенситными кристаллами. Все это, а также выделение карбидной фазы при отпуске накладывают свои особенности на процессы возврата и рекристаллизации мартенситной матрицы.

По мере повышения температуры отпуска закаленной стали в тонкой структуре происходит перераспределение и аннигиляция дислокаций, выстраивание дислокаций в стабильные стенки, возникновение субзерен, образование полигональной субструктуры и начала рекристаллизации. Температурный интервал каждого из этих процессов и степень его реализации находятся в прямой связи с устойчивостью сегрегаций атомов примесей, типом, количеством и характером выделения карбидных (нитридных) фаз при отпуске и их влиянием на блокирование дефектов кристаллического строения.