
- •13.Экспоненциальное (показательное) распределение
- •Математическое ожидание случайной величины
- •Дисперсия случайной величины
- •Пример:
- •Свойства
- •Функция регрессии
- •Основные свойства выборочного коэффициента линейной корреляции:
- •3) Уравнение линейной регрессии y на х:
- •Биноминальное распределение
- •Геометрическое распределение
- •Распределение Пуассона
- •Экспоненциальное распределение
- •Равномерное распределение
- •Нормальное распределение
- •Логнормальное распределение
- •Важнейшие распределения математической статистики
- •Основные задачи математической статистики
- •1. Задача определения закона распределения случайной величины (или системы случайных величин) по статистическим данным
- •2. Задача проверки правдоподобия гипотез
- •3. Задача нахождения неизвестных параметров распределения
- •Классификация и основные характеристики измерений
Функция регрессии
Если функциональная зависимость между двумя показателями неизвестна, обычно пытаются установить тесноту их связи, измерить степень их зависимости. При этом прибегают к методамкорреляционно-регресионного анализа.
Пусть х – независимая переменная, у – зависимая переменная.
Зависимость х от у называется функциональной, если каждому значению х соответствует единственное значение у (при этом и х и у могут быть как детерминированными, так и случайными).
Если каждому фиксированному значению х соответствует множество у, мы имеемстохастическую зависимость. Среднее значение (групповое генеральное среднее) этого множества (при х = х) называется математическим ожиданием случайной величины у, вычисленным при условии, что х = х.
Таким образом, необходимо выяснить, изменяются или нет при изменении х условные математические ожидания М(У/Х=х). Если изменяются, то имеет место корреляционная зависимость у от х, если нет, то отсутствует.
Функция регрессии. Функция f(x) = M(У/Х=х), описывающая изменение условного математического ожидания случайной переменной У при изменении значений х переменной Х, называется функцией регресии.
Обычно используют коэффициент парной корреляции или генеральное корреляционное отношение, который может изменяться от 0 до 1 или от –1 до 1 (коэффициент парной корреляции).
Коэффициент корреляции может отличаться от 0 в следующих случаях:
1) У причинно зависит от Х;
2) Х причинно зависит от У;
3) У и Х непосредственно не влияют друг на друга, но совместно зависят от одного или нескольких факторов, причинно влияющих на Х и У;
4) Имеет место простое совпадение согласованности изменений х и у.
|
|
|
|
Само по себе установление причинно-следственных связей является важной задачей. Используются различные способы формирования связей между внешними факторами и показателями системы. Например, может быть использован экспертный метод с привлечением коллективов экспертов разных специальностей.
Корреляционный анализ занимается степенью связи между двумя случайными величинами Х и Y.
Корреляционный анализ экспериментальных данных для двух случайных величин заключает в себе следующие основные приемы: 1. Вычисление выборочных коэффициентов корреляции. 2. Составление корреляционной таблицы. 3. Проверка статистической гипотезы значимости связи.
ОПРЕДЕЛЕНИЕ. Корреляционная зависимость между случайными величинами Х и Y называется линейной корреляцией, если обе функции регрессии f(x) и φ(x) являются линейными. В этом случае обе линии регрессии являются прямыми; они называется прямыми регрессии.
Для достаточно полного описания особенностей корреляционной зависимости между величинами недостаточно определить форму этой зависимости и в случае линейной зависимости оценить ее силу по величине коэффициента регрессии. Например, ясно, что корреляционная зависимость возраста Y учеников средней школы от года Х их обучения в школе является, как правило, более тесной, чем аналогичная зависимость возраста студентов высшего учебного заведения от года обучения, поскольку среди студентов одного и того же года обучения в вузе обычно наблюдается больший разброс в возраcте, чем у школьников одного и того же класса.
Для оценки тесноты линейных корреляционных зависимостей между величинами Х и Y по результатам выборочных наблюдений вводится понятие выборочного коэффициента линейной корреляции, определяемого формулой:
(7)
где σX и σY выборочные средние квадратические отклонения величин Х и Y, которые вычисляются по формулам:
(8)
Следует отметить, что основной смысл выборочного коэффициента линейной корреляции rB состоит в том, что он представляет собой эмпирическую (т.е. найденную по результатам наблюдений над величинами Х и Y) оценку соответствующего генерального коэффициента линейной корреляции r: r=rB(9)
Принимая во внимание формулы:
видим, что выборочное уравнение линейной регрессии Y на Х имеет вид:
(10)
где
.
То же можно сказать о выборочном уравнений
линейной регрессии Х на Y:
(11)